首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L-Asparaginase (ASNase), an antileukemia enzyme, is facing problems with antigenicity in the blood. Modification of L-asparaginase from Cladosporium sp. was tried to obtain improved stability and improved functionality. In our experiment, modification of the enzyme was tried with bovine serum albumin, ovalbumin by crosslinking using glutaraldehyde, N-bromosuccinimide, and mono-methoxy polyethylene glycol. Modified enzymes were studied for activity, temperature stability, rate constants (kd), and protection to proteolytic digestion. Modification with ovalbumin resulted in improved enzyme activity that was 10-fold higher compared to native enzyme, while modification with bovine serum albumin through glutaraldehyde cross-linking resulted in high stability of L-asparaginase that was 8.5- and 7.62-fold more compared to native enzyme at 28°C and 37°C by the end of 24 hr. These effects were dependent on the quantity of conjugate formed. Modification also markedly prolonged L-asparaginase half-life and serum stability. N-Bromosuccinimide-modified ASNase presented greater stability with prolonged in vitro half-life of 144 hr to proteolytic digestion relative to unmodified enzyme (93 h). The present work could be seen as producing a modified L-asparaginase with improved activity and stability and can be a potential source for developing therapeutic agents for cancer treatment.  相似文献   

2.
K B Hadley  P H Sato 《Enzyme》1989,42(4):225-234
Scurvy in guinea pigs provides a convenient model of inborn metabolic disease for the investigation of enzyme therapy protocols. Gulonolactone oxidase, the enzyme in ascorbic acid biosynthesis that is missing from the scurvy-prone species, was modified by attachment of polyethylene glycol. The catalytic properties of this enzyme were affected little by the modification. Intravenous injection of this modified form of the enzyme elicited ascorbic acid synthesis in a dose-dependent manner. The modified enzyme was stabilized to incubation at 37 degrees C but was not protected from inactivation by trypsin. The circulating half-life of enzyme activity was not prolonged by this modification. Further, attachment of polyethylene glycol did neither abolish the enzyme's ability to react with preformed antibodies nor eliminate its immunogenicity.  相似文献   

3.
L-asparaginase EC 3.5.1.1 was purified to homogeneity from Thermus thermophilus. The apparent molecular mass of L-asparaginase by SDS-PAGE was found to be 33 kDa, whereas by its mobility on Sephacryl S-300 superfine column was around 200 kDa, indicating that the enzyme at the native stage acts as hexamer. The purified enzyme showed a single band on acrylamide gel electrophoresis with pI = 6.0. The optimum pH was 9.2 and the Km for L-asparagine was 2.8 mM. It is a thermostable enzyme and it follows linear kinetics even at 77°C. Chemical modification experiments implied the existence of histidyl, arginyl and a carboxylic residues located at or near active site while serine and mainly cysteine seems to be necessary for active form.  相似文献   

4.
Attempts were made to optimize the cultural conditions for the production of L-asparaginase by Streptomyces albidoflavus under submerged fermentations. Enhanced level of L-asparaginase was found in culture medium supplemented with maltose as carbon source. Yeast extract (2%) was served as good nitrogen source for the production of L-asparaginase. The optimum pH for enzyme production was 7.5 and temperature was 35°C. The release of L-asparaginase from the cells of S. albidoflavus was high when strain was treated with cell disrupting agents like EDTA and lysozyme. The enzyme produced by the strain was purifi ed by ammonium sulfate, Sephadex G-100 and CM-Sephadex C-50 gel fi ltration and the molecular weight was apparently determined as 112 kDa.  相似文献   

5.
A method for polyethylene conjugation with recombinant asparaginase has been developed to improve therapeutically important properties of enzyme. Methoxy-p-nitrophenyl carbamate of polyethylene glycol with molecular weight 5000 was employed as the modification reagent. Optimization of the pegylation procedure resulted in high level of enzyme modification. Under 4.5 molar excess of the modification reagent more than 10 molecules of methoxy-polyethylene bound per one asparaginase molecular. The modified asparaginase retained 57% of initial activity. A simple and efficient pegylation procedure described in this work can be used for production of asparaginase with improved therapeutic properties.  相似文献   

6.
A strictly anaerobic, homoacetogenic bacterium was enriched and isolated from anoxic sewage sludge with polyethylene glycol (PEG) 1000 as sole source of carbon and energy, and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The new isolate fermented ethylene glycol and PEG's with molecular masses of 106 to 1000 to acetate and small amounts of ethanol. The PEG-degrading activity was not destroyed by proteinase K treatment of whole cells. In cell-free extracts, a diol dehydratase and a PEG-degrading (ether-cleaving) enzyme activity were detected which both formed acetaldehyde as reaction product. The diol dehydratase enzyme was oxygen-sensitive and was stimulated 10–14 fold by added adenosylcobalamine. This enzyme was found mainly in the cytoplasmic fraction (65%) and to some extent (35%) in the membrane fraction. The ether-cleaving enzyme activity reacted with PEG's of molecular masses of 106 to more than 20000. The enzyme was measurable optimally in buffers of high ionic strength (4.0), was extremely oxygen-sensitive, and was inhibited by various corrinoids (adenosylcobalamine, cyanocobalamine, hydroxocobalamine, methylcobalamine). This enzyme was found exclusively in the cytoplasmic fraction. It is concluded that PEG is degraded by this bacterium inside the cytoplasm by a hydroxyl shift reaction, analogous to a diol dehydratase reaction, to form an unstable hemiacetal intermediate. The name polyethylene glycol acetaldehyde lyase is suggested for the responsible enzyme.Abbreviations EG ethylene glycol - DiEG diethylene glycol - TriEG triethylene glycol - TeEG tetraethylene glycol - PEG polyethylene glycol (molecular mass indicated)  相似文献   

7.
A pilot-scale process for the isolation of an aliphatic, amidase from Pseudomonas aeruginosa has been developed. A constitutive, partially irrepressible mutant was employed to give a high initial enzyme concentration. An existing laboratory isolation procedure has been scaled up and modified particularly by substitution of polyethylene glycol for ammonium sulfate precipitation as the first stage in the conversion of the fractionation to continuous operation. Full recovery of activity was achieved with the modification. The recovery of enzyme from a subsequent chromatographic stage was 85% and the maximum overall purification was 28-fold.  相似文献   

8.
Summary A chitinase produced by Bacillus licheniformis MB-2 isolated from Tompaso geothermal springs, Indonesia, was purified and characterized. The extracellular enzyme was isolated by successive hydrophobic interaction, anion exchange, and gel filtration chromatographies. The purified enzyme was a monomer with an apparent molecular weight of 67 kDa. The optimal temperature and pH of the enzyme were 70 °C and 6.0, respectively. It was stable below 60 °C for 2 h and over a broad pH range of 4.0–11.0 for 4 h. The enzyme was resistant to denaturation by urea (1 M), Tween-20 (1%) and Triton-X (1%), but unstable toward organic solvents such as dimethyl sulphoxide, DMSO, (5%) and polyethylene glycol, PEG, (5%) for 30 min. The enzyme hydrolysed colloidal chitin, glycol chitin, chitosan, and glycol chitosan. The first 13 N-terminal amino acids of the enzyme were determined as SGKNYKIIGYYPS, which is identical to those in chitinases from B. licheniformis and B. circulans.  相似文献   

9.
Phosphofructokinase has been isolated in homogenous form from baker's yeast. The first two steps, fractional precipitation with polyethylene glycol and affinity partitioning in aqueous biphasic systems containing Cibacron blue F3G-A-polyethylene glycol, gave a 58-fold purification within 3 h. In these steps the amount of contaminating proteases was reduced by 2 orders of magnitude. After concentration using DEAE-cellulose followed by gel chromatography, homogeneous enzyme was obtained. The advantages of affinity partitioning for large-scale preparations are discussed.  相似文献   

10.
ABSTRACT

This article comprises detailed information about L-asparaginase, encompassing topics such as microbial and plant sources of L-asparaginase, treatment with L-asparaginase, mechanism of action of L-asparaginase, production, purification, properties, expression and characteristics of l-asparaginase along with information about studies on the structure of L-asparaginase. Although L-asparaginase has been reviewed by , our effort has been to include recent and updated information about the enzyme covering new aspects such as structural modification and immobilization of L-asparaginase, recombinant L-asparaginase, resistance to L-asparaginase, methods of assay of L-asparagine and L-asparaginase activity using the biosensor approach, L-asparaginase activity in soil and the factors affecting it. Also, side-effects of L-asparaginase treatment in acute lymphoblastic leukemia (ALL) have been discussed in the current review. L-asparaginase has been and is still one of the most widely studied therapeutic enzymes by researchers and scientists worldwide.  相似文献   

11.
L-asparaginase (EC 3.5.1.1), which catalyzes the deamidation of L-asparagine to L-aspartic acid and ammonia, has been widely used as a key therapeutic tool in the treatment of tumors. The current commercially available L-asparaginases, produced from bacteria, have signs of toxicity and hypersensitivity reactions during the course of tumor therapy. Therefore, searching for L-asparaginases with unique biochemical properties and fewer adverse effects was the objective of this work. In this study, cyanobacterial strain Synechococcus elongatus PCC6803 was found as a novel source of L-asparaginase. The L-asparaginase gene coding sequence (gi:939195038) was cloned and expressed in E. coli BL21(DE3), and the recombinant protein (Se.ASPII) was purified by affinity chromatography. The enzyme has high affinity towards Lasparagine and shows very weak affinity towards L-glutamine. The enzymatic properties of the recombinant enzyme were investigated, and the kinetic parameters (Km, Vmax) were measured. The pH and temperature dependence profiles of the novel enzyme were analyzed. The work was extended to measure the antitumor properties of the novel enzyme against different human tumor cell lines.  相似文献   

12.
Lipase was modified using polyethylene glycol activated by p-nitrochloroformate. The hydrolytic activity of the polyethylene glycol-derivatised lipase (PEG-lipase) was relatively low compared with that of the unmodified enzyme in aqueous system. The esterification activity, however, was enhanced following the modification. The rate of esterification of butyric acid was higher than that of oleic acid. Benzene was the best solvent for the esterification reaction.  相似文献   

13.
This article comprises detailed information about L-asparaginase, encompassing topics such as microbial and plant sources of L-asparaginase, treatment with L-asparaginase, mechanism of action of L-asparaginase, production, purification, properties, expression and characteristics of l-asparaginase along with information about studies on the structure of L-asparaginase. Although L-asparaginase has been reviewed by Savitri and Azmi (2003), our effort has been to include recent and updated information about the enzyme covering new aspects such as structural modification and immobilization of L-asparaginase, recombinant L-asparaginase, resistance to L-asparaginase, methods of assay of L-asparagine and L-asparaginase activity using the biosensor approach, L-asparaginase activity in soil and the factors affecting it. Also, side-effects of L-asparaginase treatment in acute lymphoblastic leukemia (ALL) have been discussed in the current review. L-asparaginase has been and is still one of the most widely studied therapeutic enzymes by researchers and scientists worldwide.  相似文献   

14.
The periplasmic nonspecific acid phosphatase II from Salmonella typhimurium was purified to homogeneity from a mutant strain that overproduces the enzyme (Uerkvitz, W., and Beck, C.F. (1981) J. Biol. Chem. 256, 382-389). It was shown that the enzyme transfers phosphate groups from organic phosphoric acid esters (donors) to water as well as to the 2'-, 3'-, or 5'-hydroxyls of nucleosides, nucleotides, and other compounds with free hydroxyl groups (acceptors). The enzyme was crystallized in two forms by precipitation with polyethylene glycol. Needles were formed in buffer containing Mg2+, whereas thin rectangular plates appeared in the presence of the non-ionic detergent n-octyl glucoside. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under partially or completely denaturating conditions revealed that the native enzyme is a tetramer consisting of identical 24-kDa monomers. Owing to surface inactivation, polyethylene glycol, non-ionic, or Zwitterionic detergents are indispensable for enzyme stability. The detergents are able to reactivate inactivated enzyme when present near or above their critical micelle concentration.  相似文献   

15.
C D Tormanen 《Cryobiology》1992,29(4):511-518
Polyethylene glycol is a water-soluble polymer which is widely used in the pharmaceutical, cosmetic, and chemical industries. In this study, it is shown that polyethylene glycol is an effective cryoprotectant of rat kidney transamidinase purified from both the mitochondria and cytosol. Much of the activity is lost when the purified enzyme is frozen and thawed in sodium-potassium phosphate buffer in the absence of cryoprotectants. Polyethylene glycols with molecular weights of 4000 to 10,000 were effective cryoprotectants. However, polyethylene glycols with a molecular weight of 1000 or lower inhibited the purified enzyme. A concentration of only 0.01% polyethylene glycol 4000, 8000, or 10,000 was required for complete cryoprotection. In addition to polyethylene glycol, 0.5 mM ethylenediaminetetraacetic acid was required in the phosphate buffer for complete cryoprotection. The stabilization of purified transamidinase by polyethylene glycol will facilitate characterization experiments designed to compare the properties of the mitochondrial and cytosolic isozymes.  相似文献   

16.
Extraction and purification of D-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei has been studied by means of immobilized metal ion affinity partitioning (IMAP) in aqueous two-phase systems. The partition of the enzyme can be influenced strongly by inclusion of iminodiacetic acid as chelating ligand coupled to polyethylene glycol and loaded with Cu2+ ions into the phase system. This applies to polyethylene glycol/dextran as well as polyethylene glycol/salt phase systems. An increase in enzyme partition coefficient of up to about 1000-fold was observed. Based on the mathematic model presented recently by Suh and Arnold (1990) approximately 6.4 histidine residues were calculated to be involved in the enzyme-metal chelate complex. Direct extraction of the enzyme from both cell homogenate and cell debris supernatant proved unsatisfactory due to disturbances caused by the presence of cell debris and low molecular weight cell components. A combination with a preceding prepurification by a fractional precipitation with polyethylene glycol resulted in a strong affinity effect accompanied by an efficient purification during IMAP (purification factor of 11 with a yield of approximately 90%). Based on this step, an efficient downstream process can be designed for D-hydroxyisocaproate dehydrogenase.  相似文献   

17.
Summary The effect of additives such as polyhydric alcohols, polyethylene glycol and casein on the thermostability ofCucurbita ficifolia protease was determined. Glycerol and mannitol increased the half life of the enzyme approximately 2-fold. Addition of polyethylene glycol had a positive effect on enzyme stability and its stabilizing efficiency appears to correlate with additive concentration. Casein was also shown to be effective as a protease stabilizer.  相似文献   

18.
Polyethylene glycol (PEG) conjugation technology has been successfully applied to improve the performance of protein drugs. In this study, L-asparaginase was N-terminal site-specifically modified by alkylating PEG with monomethoxy polyethylene glycol-propionaldehyde (mPEG-ALD20000). The optimum reaction parameters were determined as pH 5.0, a molar ratio of mPEG-ALD2000 to L-asparaginase of 10:1, a reaction time of 16 h and temperature of 25 degrees C. PEG-L-asparaginase (PEG-L-ASNase) was isolated and purified with consecutive anion-exchange (XK, 16 x 20 cm, Q Sepharose FF) and gel-filtration (Tricorn, 10 x 600 cm, Sephacryl S-300 HR) chromatography, respectively. PEG-L-ASNase retained 43.5% of its activity and the N-terminal amino groups were modified to an extent of 3.67%.  相似文献   

19.
R Kucera  H Paulus 《Enzyme》1988,39(2):115-118
The estimation of ribonucleotide reductase in cell extracts has been problematical on account of abnormally low activities at low enzyme concentrations, presumably due to subunit dissociation. This problem can be alleviated by assaying the enzyme in the presence of polyethylene glycol. The presence of 15% polyethylene glycol during the assay greatly stimulated ribonucleotide reductase activity at low enzyme concentrations and allowed measurement of enzyme activity in as little as 10(5) mouse L929 cells, a 30-fold enhancement of assay sensitivity. Enzyme activity measured in the presence of 15% polyethylene glycol was proportional to enzyme concentration, thus making possible the accurate measurement of very low levels of ribonucleotide reductase.  相似文献   

20.
Phosphofructokinase (EC 2.7.1.11) from rabbit liver was purified to homogeneity. Preincubation of enzyme results in nonlinearity of enzyme activity with enzyme concentration. Therefore K0.5 of enzyme for fructose 6 phosphate in the absence or presence of fructose 2,6 bisphosphate or polyethylene glycol or in the presence of both was determined at physiological concentrations of its various effectors by taking the initial rate obtained by adding the enzyme last. They decrease the K0.5 value from 4.1 mM to about 0.2mM. The K0.5 of enzyme for fructose 2,6 bisphosphate was also determined under the above conditions. It is about 4.3ΜM. Transient kinetics of phosphofructokinase at varying concentrations of enzyme in the presence of fructose 2,6 bisphosphate or polyethylene glycol or in the presence of both were studied. It was found that although they decrease t1/2 i.e. the time to reach half the maximal steady rate by about 5–8 fold, it was about constant at varying concentrations of the enzyme. These results indicate that fructose 2,6 bisphosphate and polyethylene glycol decrease K0.5 of the enzyme for fructose 6 phosphate not by associating the enzyme to higher aggregates, but by a different mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号