首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liver is a central regulator of glucose homeostasis and stores or releases glucose according to metabolic demands. In insulin resistant states or diabetes the dysregulation of hepatic glucose release contributes significantly to the pathophysiology of these conditions. Acute or chronic liver disease can aggravate insulin resistance and the physiological effects of insulin on hepatocytes are disturbed. Insulin resistance has also been recognized as an independent risk factor for the development of liver injury. In the healthy liver tissue homeostasis is achieved through cell turnover by apoptosis and dysregulation of the physiological process resulting in too much or too little cell death can have potentially devastating effects on liver tissue. The delineation of the signaling pathways that mediate apoptosis changed the paradigms of understanding of many liver diseases. These signaling events include cell surface based receptor-ligand systems and intracellular signaling pathways that are regulated through kinases on multiple levels. The dissection of these signaling pathways has shown that the regulators of apoptosis signaling events in hepatocytes can also modulate insulin signaling pathways and that mediators of insulin resistance in turn influence liver cell apoptosis. This review will summarize the potential crosstalk between apoptosis and insulin resistance signaling events and discuss the involved mediators.  相似文献   

2.
3.
4.
哺乳动物Hippo信号通路:肿瘤治疗的新标靶   总被引:1,自引:0,他引:1  
Xu CM  Wan FS 《遗传》2012,34(3):269-280
Hippo信号通路是首次在果蝇中发现具有调节细胞增殖与凋亡作用的信号通路。最近发现果蝇Hippo信号通路的组成、分子作用机制和生物学功能在进化过程中高度保守。Hippo信号通路在胚胎发育中对细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用。同时,Hippo信号通路与Wnt信号通路、Notch信号通路等相互作用、密切联系,在肿瘤的发生、发展过程中也起到关键作用。文章综述了哺乳动物Hippo信号通路的作用机理、与其他信号通路和蛋白质因子的相互联系及与肿瘤的关系,对于肿瘤的诊断、预防和治疗具有一定的参考价值。  相似文献   

5.
6.
Bone development is a complex process that requires the activity of several different signaling pathways and cell types. It involves the coordinated action of osteoclasts (cells that are capable of resorbing bone), osteoblasts (cells that are able to form bone), osteocytes (cells that form a syncytial network within the bone), skeletal muscle cells and the bone marrow. In recent years, the cytokine interleukin-11 (IL-11), a member of the IL-6 family of cytokines, has emerged as an important regulatory protein for bone formation, remodeling and resorption. Furthermore, coding missense mutations in the IL11RA gene, which encodes the IL-11 receptor (IL-11R), have recently been linked to craniosynostosis, a human disease in which the sutures that line the head bones close prematurely. This review summarizes current knowledge about IL-11 and highlights its role in bone development and homeostasis. It further discusses the specificity and redundancy provided by the other members of the IL-6 cytokine family and how they facilitate signaling and cross-talk between skeletal muscle cells, bone cells and the bone marrow. We describe their actions in physiological and in pathological states and discuss how this knowledge could be translated into therapy.  相似文献   

7.
中枢神经系统疾病因其发病机制复杂而难以找到药物作用的有效靶点。甘丙肽(galanin, GAL)因其广泛的中枢神经系统分布并与多种神经系统疾病密切相关而进入人们的视线。现已证明,GAL与三种G蛋白偶联受体(GALR1-3)结合后,通过抑制cAMP/PKA(GALR1、GALR3)和激活磷脂酶C(GALR2)等信号通路调节众多生理和病理过程。本文概述了近年来GAL及其受体在中枢神经系统疾病中的作用的研究进展,旨在为理解这些疾病的发病机制以及靶向药物的研发提供新的指导。  相似文献   

8.
Besides regulatory T cells, also comprising T cell receptor (CR)-specific T cells, it is increasingly evident that natural autoantibodies, among which anti-TCR antibodies represent additional immunomodulators in the immune system. We took advantage of myasthenia gravis (MG), a well-characterized antibody-mediated autoimmune disease, to demonstrate that without prior vaccination against TCR determinants, patients with MG present increased circulating anti-TCR antibodies directed to the dominant TCR used by pathogenic T cells. These findings, pointing to a regulatory protective role of anti-TCR antibodies, are discussed in the context of the mechanisms of action and the physiological role of anti-TCR antibodies in T cell homeostasis, and of the puzzling world of regulatory T cells. Natural anti-TCR antibodies are found in the serum of all individuals, with prevalence in physiological and pathological situations such as ageing, pregnancy, allograft transplantation, retroviral infection, and autoimmune diseases, including MG. The common link is the mounting of immune responses against alloantigens, pathogens or autoantigens, conferring on anti-TCR antibodies a broader role in controlling responses to any antigen (self or non-self) and more generally in T cell homeostasis. This homeostasis mechanism may well be exploited in therapeutic strategies based on TCR peptide vaccination in autoimmune diseases.  相似文献   

9.
滞育是生物体为了渡过恶劣环境而进行的一种停滞生长发育的生理状态,主要受遗传和环境因素的影响。研究发现光周期、温度、食物营养和体内激素水平等都能诱导昆虫滞育发生,然而滞育诱导是一个复杂的调控过程,对其分子机制的研究仍不清楚。本文对近年来在滞育诱导相关分子和分子信号通路方面取得的研究进展进行梳理,重点介绍了光周期和温度诱导昆虫滞育发生的分子级联系统,包括生物钟Per/Tim和Clk反馈回路、温度敏感型瞬时受体电位通道、γ-氨基丁酸GABA信号通路、珊瑚青素Corazonin信号通路和胰岛素信号途径等,该综述内容将为昆虫滞育研究提供帮助,同时为利用昆虫滞育进行农林害虫的防治及天敌保护提供理论参考。  相似文献   

10.
Insulin signaling at target tissues is essential for growth and development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative feedback control mechanism whereby downstream components inhibit upstream elements along the insulin-signaling pathway (autoregulation) or by signals from apparently unrelated pathways that inhibit insulin signaling thus leading to insulin resistance. Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues has emerged as a key step in these control processes under both physiological and pathological conditions. The list of IRS kinases implicated in the development of insulin resistance is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here, we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on "hot spot" domains. The flexibility vs. specificity features of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin signaling, insulin resistance and type 2 diabetes, an emerging epidemic of the 21st century are outlined.  相似文献   

11.
Nuclear prostaglandin receptors: role in pregnancy and parturition?   总被引:5,自引:0,他引:5  
The key regulatory role of prostanoids [prostaglandins (PGs) and thromboxanes (TXs)] in the maintenance of pregnancy and initiation of parturition has been established. However, our understanding of how these events are fine-tuned by the recruitment of specific signaling pathways remains unclear. Whereas, initial thoughts were that PGs were lipophilic and would easily cross cell membranes without specific receptors or transport processes, it has since been realized that PG signaling occurs via specific cell surface G-protein coupled receptors (GPCRs) coupled to classical adenylate cyclase or inositol phosphate signaling pathways. Furthermore, specific PG transporters have been identified and cloned adding a further level of complexity to the regulation of paracrine action of these potent bioactive molecules. It is now apparent that PGs also activate nuclear receptors, opening the possibility of novel intracrine signaling mechanisms. The existence of intracrine signaling pathways is further supported by accumulating evidence linking the perinuclear localization of PG synthesizing enzymes with intracellular PG synthesis. This review will focus on the evidence for a role of nuclear actions of PGs in the regulation of pregnancy and parturition.  相似文献   

12.
13.
It has become increasingly evident that among purine nucleotides, guanine based nucleotides specially guanosine-5′-triphosphate (GTP) serve as an important and independent regulatory factors for development and diverse cellular functions such as differentiation, metabolism, proliferation and survival in multiple tissues. In this brief review, it has been provided selective outline related to delicate regulation of signaling pathways by guanosine based nucleotides as intracellular signaling molecules. Although the exact mode of action of theses nucleotides in many biological processes and signaling pathways is still elusive, it has become well clear that intracellular guanosine based nucleotides content rather than adenosine based nucleotides could modulate the intensity and duration of signaling which ultimately impact on cell’s fate. It opens an entirely new perspective for developing new and potential therapeutic strategies to combat diseases like cancer, hypoxia, etc.  相似文献   

14.
Extracellular ATP is a potent signaling molecule released from various cells throughout the body and is intimately involved in the pathophysiological functions of the nervous system and immune system by activating P2 purinergic receptors. Recent increasingly studies showed that extracellular ATP exhibits circadian oscillation with an approximately 24-h periodicity, which participates in regulatory pathways of central oscillator suprachiasmatic nucleus and peripheral oscillator bladder, respectively. Oscillators modulate the protein expression of ATP release channels and ectonucleotidase activity through clock genes; indeed, real-time alterations of ATP release and degradation determine outcomes of temporal character on extracellular ATP rhythm. The regulatory pathways on extracellular ATP rhythm are different in central and peripheral systems. In this review, we summarize the circadian rhythm of extracellular ATP and discuss several circadian regulatory pathways in different organs via ATP release and degradation, to provide a new understanding for purinergic signaling in the regulatory mechanism of circadian rhythm and a potential target to research the circadian regulation of extracellular ATP in other circadian oscillators.  相似文献   

15.
mTOR是细胞生长和增殖的中枢调控因子。mTOR形成2个不同的复合物mTORC1和mTORC2。mTORC1受多种信号调节,如生长因子、氨基酸和细胞能量,同时,mTORC1调节许多重要的细胞过程,包括翻译、转录和自噬。AMPK作为一种关键的生理能量传感器,是细胞和有机体能量平衡的主要调节因子,协调多种代谢途径,平衡能量的供应和需求,最终调节细胞和器官的生长。能量代谢平衡调控是由多个与之相关的信号通路所介导,其中AMPK/mTOR信号通路在细胞内共同构成一个合成代谢和分解代谢过程的开关。此外,AMPK/mTOR信号通路还是一个自噬的重要调控途径。本文着重于目前对AMPK和mTOR信号传导之间关系的了解,讨论了AMPK/mTOR在细胞和有机体能量稳态中的作用。  相似文献   

16.
Sphingosine-1-phosphate (SPP) is a bioactive lipid produced from the metabolism of sphingomyelin. It is an important constituent of serum and regulates cell growth, survival, migration, differentiation and gene expression. Its mode of action has been enigmatic; however, recent findings have shown that a family of G-protein-coupled receptors (GPCR) of the endothelial differentiation gene (EDG) family serve as plasma membrane-localized receptors for SPP. Furthermore, the EDG receptors appear to be SPP receptor subtypes with distinct signaling characteristics. In vascular endothelial cells, SPP acts on EDG-1 and EDG-3 subtypes of receptors to induce cell survival and morphogenesis. Such pathways appear to be critical for SPP-induced angiogenic response in vivo. In addition, the EDG-1 gene is essential for vascular maturation in development. Moreover, developmental studies in Zebrafish have indicated that SPP signaling via the EDG-5 like receptor Miles Apart (Mil) is essential for heart development. These data strongly suggest that a physiological role of SPP is in the formation of the cardiovascular system. Despite these recent findings, much needs to be clarified with respect to the physiological role of SPP synthesis and action. This review will focus on the recent findings on SPP receptors and the effects on the cardiovascular system.  相似文献   

17.
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.  相似文献   

18.
Hla T 《Prostaglandins》2001,64(1-4):135-142
Sphingosine-1-phosphate (SPP) is a bioactive lipid produced from the metabolism of sphingomyelin. It is an important constituent of serum and regulates cell growth, survival, migration, differentiation and gene expression. Its mode of action has been enigmatic; however, recent findings have shown that a family of G-protein-coupled receptors (GPCR) of the endothelial differentiation gene (EDG) family serve as plasma membrane-localized receptors for SPP. Furthermore, the EDG receptors appear to be SPP receptor subtypes with distinct signaling characteristics. In vascular endothelial cells, SPP acts on EDG-1 and EDG-3 subtypes of receptors to induce cell survival and morphogenesis. Such pathways appear to be critical for SPP-induced angiogenic response in vivo. In addition, the EDG-1 gene is essential for vascular maturation in development. Moreover, developmental studies in Zebrafish have indicated that SPP signaling via the EDG-5 like receptor Miles Apart (Mil) is essential for heart development. These data strongly suggest that a physiological role of SPP is in the formation of the cardiovascular system. Despite these recent findings, much needs to be clarified with respect to the physiological role of SPP synthesis and action. This review will focus on the recent findings on SPP receptors and the effects on the cardiovascular system.  相似文献   

19.
20.
蛋白磷酸酶2A(protein phosphatase 2A,PP2A)是细胞中广泛表达的异三聚体全酶,调节许多重要的信号通路,它的表达异常所致的信号通路紊乱会引发肿瘤和促进肿瘤的发展.PP2A在特定的状态下能够发挥抑癌因子的作用,这种抑癌特性由B调节亚基与底物的相互作用来决定,因此B调节亚基在PP2A的抑癌功能中起关键作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号