首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The genus Hypochaeris offers an excellent model for studies of recent adaptive radiation in the South American continent. We used karyotype analysis with chromomycin?A3 (CMA3)/4??,6-diamidino-2-phenylindole (DAPI) banding and fluorescence in?situ hybridization (FISH), and amplified fragment length polymorphism (AFLP) fingerprinting to investigate for the first time the Brazilian endemic H.?catharinensis and define its position within the South American group of species. Strong CMA-positive signals were seen at the end of both arms of chromosome?3 and at the end of the long arm of chromosome?4. DAPI bands were only detected in subterminal position on short arm of chromosome?4. FISH with 5S and 35S ribosomal DNA (rDNA) probes revealed a single 5S rDNA locus on short arm of chromosome?2, typical for all other South American Hypochaeris taxa analyzed to date. The 35S rDNA locus was identified at subterminal position on the short arm of chromosome?3, as reported so far for only two of the known species (H.?lutea and H.?patagonica). The AFLP study included 55 individuals, comprising nine species of the South American Hypochaeris plus their putative ancestor H.?angustifolia. Eleven AFLP primer combinations generated a total of 401 fragments, of which 388 (96.7%) were polymorphic. High genetic similarities were observed among taxa, with all South American Hypochaeris species falling into one main cluster [100% bootstrap (BS)]. Hypochaeris catharinensis is closely related to H.?lutea (82% BS), forming a well-separated subcluster within the South American species. Taken together, the karyological and AFLP data contribute to the placement of H.?catharinensis within the phylogenetic framework of South American species of Hypochaeris and allow the definition of a novel and well-resolved phylogenetic group (the Lutea group).  相似文献   

2.
Background and Aims: Changes in chromosome structure and number play an importantrole in plant evolution. A system well-suited to studying differentmodes of chromosome evolution is the genus Hypochaeris (Asteraceae)with its centre of species' diversity in South America. AllSouth American species uniformly have a chromosome base numberof x = 4 combined with variation in rDNA number and distribution,and a high frequency of polyploidy. The aim of this paper isto assess directions and mechanisms of karyotype evolution inSouth American species by interpreting both newly obtained andprevious data concerning rDNA localization in a phylogeneticcontext. Methods: Eleven Hypochaeris species from 18 populations were studiedusing fluorescence in situ hybridization (FISH) with 35S and5S rDNA probes. A phylogenetic framework was established fromneighbour-net analysis of amplified fragment length polymorphism(AFLP) fingerprint data. Key Results: A single 5S rDNA locus is invariably found on the short armof chromosome 2. Using 35S rDNA loci, based on number (one ortwo) and localization (interstitial on the long arm of chromosome2, but sometimes lacking, and terminal or interstitial on theshort arm of chromosome 3, only very rarely lacking), sevenkaryotype groups can be distinguished; five of these includepolyploids. Karyotype groups with more than one species do notform monophyletic groups. Conclusions: Early evolution of Hypochaeris in South America was characterizedby considerable karyotype differentiation resulting from independentderivations from an ancestral karyotype. There was marked diversificationwith respect to the position and evolution of the 35S rDNA locuson chromosome 3, probably involving inversions and/or transpositions,and on chromosome 2 (rarely 3) concerning inactivation and loss.Among these different karyotype assemblages, the apargioidesgroup and its derivatives constitute by far the majority ofspecies.  相似文献   

3.
The genera Grindelia Willd. and Haplopappus Cass. belong to the family Asteraceae - Astereae and are distributed in America and South America, respectively. Previous cytotaxonomic studies showed for South American species of Grindelia 2n=12 and for Haplopappus 2n=10 and 2n=12. Both Grindelia species (G. anethifolia, G. prunelloides), newly analyzed with molecular-cytological methods, exhibited symmetric karyotypes (AsI %=55.46 and 55.95) with metacentric chromosome sets (5m + 1m-sat) and 2n=12 chromosomes. The NOR was detected after fluorescence in situ hybridization (FISH) with 18/25S rDNA in the satellite chromosome 2. In contrast H. Happlopappus glutinosus, H. grindeloides and H. stolpii showed exclusively a higher asymmetric index (66.83%, 67.01% and 68.87%, respectively) with submetacentric chromosome sets (4sm + 1sm–sat). The sat-chromosomes 3 of H. glutinosus and H. grindelioides were both significantly different in their length from chromosomes 2 and 4. Furthermore in Grindelia the FISH with 5S rDNA could estimate signals in the short arms of chromosomes 3 or 4, that were not significantly differentiated in their length. Contrary to these findings in Grindelia, the position of 5S rDNA in Haplopappus was detected in the long arms of chromosome 1 (H. grindelioides and H. stolpii) and chromosome 2 (with two different loci) and chromosome 4 of H. glutinosus. The lengths of all measured chromosome arms with 5S rDNA were significantly different to those of the neighbours in the karyotypes. The two-color FISH of 5S and 18/25S rDNA had provided clear karyotypic markers for three (Haplopappus glutinosus) and two (H. grindelioides and H. stolpii) chromosomes. The number and position of rDNA signals were relatively highly conserved in the investigated five species without the double marked chromosome 2 of H. glutinosus, which shows an evolutionary dynamic of this 5S rRNA specific gene cluster. This investigation supports the assumption that the evolution of New World members of Grindelia and Haplopappus has not been accompanied by large karyotypic changes, but small chromosomal rearrangements have undoubtedly occurred (e.g. 5S rDNA localizations).  相似文献   

4.
To investigate the phylogenetic relationships of living marsupials, morphometric and G-banded chromosome analyses were made in the Chilean species Dromiciops gliroides (Microbiotheria) and Thylamys elegans (Didelphimorphia). Chromosome arm lengths and patterns of G-bands were compared in at least eight bone marrow metaphase spreads in six and nine specimens, respectively. They were contrasted with those published for another 11 American and Australian genera. Three of six autosomal pairs (A1, A3, and C2) were uniquely shared by Dromiciops and some Australian species, being different in shape and G-banded patterns from those with similar total sizes in Thylamys and other South American didelphoid karyotypes. Such chromosomal correspondences suggest the past occurrence of at least three pericentric inversions. A table of character states constructed from chromosomal G-band comparisons is presented, showing that cytogenetic data agree with Szalay's (1982) hypothesis on the affinities of the South American Dromiciops with Australian marsupials.  相似文献   

5.
The phylogenetic relationships within many clades of the Crassulaceae are still uncertain, therefore in this study attention was focused on the “Acre clade”, a group comprised of approximately 526 species in eight genera that include many Asian and Mediterranean species of Sedum and the majority of the American genera (Echeveria, Graptopetalum, Lenophyllum, Pachyphytum, Villadia, and Thompsonella). Parsimony and Bayesian analyses were conducted with 133 species based on nuclear (ETS, ITS) and chloroplast DNA regions (rpS16, matK). Our analyses retrieved four major clades within the Acre clade. Two of these were in a grade and corresponded to Asian species of Sedum, the rest corresponded to a European–Macaronesian group and to an American group. The American group included all taxa that were formerly placed in the Echeverioideae and the majority of the American Sedoideae. Our analyses support the monophyly of three genera – Lenophyllum, Thompsonella, and Pachyphytum; however, the relationships among Echeveria, Sedum and the various segregates of Sedum are largely unresolved. Our analyses represents the first broad phylogenetic framework for Acre clade, but further studies are necessary on the groups poorly represented here, such as the European and Asian species of Sedum and the Central and South American species of Echeveria.  相似文献   

6.
The sequences of the internal transcribed spacers (ITS regions) and the 5.8S rRNA gene, together with the electrophoretic karyotypes of 27 strains representative of the six species belonging to the genus Hanseniaspora, were examined. From the analysis of the 5.8S rRNA gene and the ITS regions, the genus Hanseniaspora is monophyletic and can be divided into two subgroups. This subdivision was supported by electrophoretic chromosome patterns. Hanseniaspora guilliermondii, H. uvarum and H. valbyensis show 6–7 bands (8 to 9 chromosomes), while the second group comprises the species H. occidentalis, H. osmophila and H. vineae which have only 5 chromosomes.  相似文献   

7.
A crossing programme including 30 species and 40 cytotypes within the genusHordeum was undertaken. Viable hybrids were obtained in 302 combinations, 15 of which were intraspecific. Differences in seed set and in germination were observed in crosses between different groups of species. Obtaining crosses between different taxonomic groups was generally more difficult when diploid material was used. Some species, e.g.,H. lechleri, H. jubatum, andH. brachyantherum showed a higher crossability than others. The chromosome numbers of the hybrids were usually those expected from the parental numbers but aneuploid series around the expected numbers were rather frequent. Three cases of unreduced gametes were found. Selective chromosome elimination was restricted to combinations including eitherH. vulgare orH. bulbosum.—Despite a very diverse morphology, all South American diploid species together with the two North American diploidsH. intercedens andH. pusillum appear to be closely related. The hexaploid American speciesH. procerum, H. lechleri, andH. arizonicum are also related. The two North American tetraploid speciesH. jubatum andH. brachyantherum sometimes form semifertile hybrids. The Asiatic speciesH. roshevitzii appears to be related to both North and South American taxa.  相似文献   

8.
The genus Hypochaeris has a recent evolutionary history caused by long‐distance dispersal in conjunction with adaptive radiation in the South American continent. Hypochaeris lutea is a perennial herb that grows mostly at altitudes of around 1000 m in cold swamps of the southern regions of Brazil. We investigated the amplified fragment length polymorphism (AFLP) in 270 individuals representing 11 Brazilian populations of H. lutea to elucidate the population genetic structure of this species. The frequencies of polymorphic loci and gene diversity ranged from 83.42% to 91.66% and from 0.26 to 0.34, respectively. Analysis of molecular variance revealed that most of the genetic variability was found within (76.67%) rather than among (23.3%) populations, agreeing with the pattern of genetic distribution within and among populations observed in other allogamous species of Hypochaeris. A Mantel test showed no correlation between genetic and geographic distances when all populations were considered. Simulations performed using a Bayesian approach consistently identified two clusters with different admixture proportions of individuals, as also revealed by a UPGMA dendrogram of populations. The pattern of genetic structure observed in H. lutea is consistent with a process of successive colonization events by long‐distance dispersal resembling the rapid and recent radiation that has been proposed to explain the origin of the South American species of Hypochaeris.  相似文献   

9.
The chromosome complement and the C-banded karyotypes of specimens of Geoplana marginata auct. and of Issoca rezendei (Schirch) were investigated. The diploid and fundamental numbers of the two species were identical (2n = 14; FN = 28). Their karyotypes were similar except for the morphology of chromosome pair 6. Their C-banding patterns differed in quantity and localization of the constitutive heterochromatin. The similarity in karyotypes of these species support the hypothesis, proposed earlier on morphological grounds, that the genera Geoplana Stimpson and Issoca Froehlich are closely related. G. marginata and I. rezendei are the first land planarian species of the Neotropical Region to have their karyotypes described.  相似文献   

10.
The karyotypes of 16 populations belonging to eight species of Polygonatum from China were analysed. The chromosome numbers and karyotypes of P. omeiense, P. adnatum and P. hirtellum and the diploidy of P. tessellatum are reported for the first time. The basic chromosome numbers were x = 11, 13, 14 and 15. Based on Stebbins' karyotypic classification, the four karyotypes were recognized as 2B, 3B, 2C and 3C. Considering the arm ratio and individual chromosome size, it was concluded that the possible evolutionary trend of the karyotypes in Polygonatum was from 2B to 3C. The results show that: (1) satellite heterozygosity occurs in many species of this genus; (2) mixoploidy and B chromosomes occur in some species; and (c) karyotypes are different in different species and even in different populations of the same species. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 245–254.  相似文献   

11.
The karyotype of the catfish,Parasilurus aristotelis, from Lake Trichonis, Greece, shows that the species has a diploid chromosome number of 2n = 58. Comparison with published data on the karyotypes of other species belonging toParasilurus shows the same chromosome number but different arm numbers. Reported karyological data of the European populations ofSilurus indicate that they have a diploid number of 2n=60. A reduction in chromosome number is assumed to be connected with speciation and, therefore,Parasilurus probably forms a separate group from that ofSilurus.  相似文献   

12.
Chromosome numbers are reported for 23 species of the genusBunium, distributed mainly in Middle Asia and Transcaucausia. The great diversity of basic chromosome numbers is unusual for a genus ofUmbelliferae: x = 11, 10, 9, 8, 7, and 6. This series obviously has to be interpreted as descending dysploidy. Infraspecific aneuploidy was found in three species, but there are no B-chromosomes or polyploidy. The karyotypes of 18 species are described, using two morphometric chromosome parameters, centromere position and relative length (Table 2), and illustrated (Figs. 2–4). Species vary greatly in their karyotype asymmetry (20.4–45.9%). Chromosome numbers and structures appear to be useful in the karyotaxonomical and biogeographical analysis of the genus.  相似文献   

13.
A karyological analysis was carried out on different European species of the genus Hydromantes (Plethodontidae). All the species examined share the same chromosome number (2n=28) and, with the exception represented by pair XIV, morphologically similar karyotypes. While the karyotypes display a similar distribution — mainly centromeric and pericentric — of C-heterochromatin, quantitative variations in pericentric heterochromatin are observed among species. In the continental species Hydromantes italicus and ambrosii as well as in the eastern Sardinian species imperialis, flavus and specie nova, pair XIV consists of heteromorphic sex chromosomes of the XX/XY type. It is proposed that the differentiation of the Y might have taken place through the occurrence of a structural rearrangement, such as a pericentric inversion, starting from a hypothetical, homomorphic pair XIV. A sex-related heteromorphism is not found in the western Sardinian species H. genei. A further karyological differentiation among these species concerns the position of the nucleolus organizing region (NOR), which is located on chromosome XII (H. italicus and ambrosii) or on chromosome X, close to the centromere (H. genei, H. imperialis and H. specie nova), or in an intercalary position (H. flavus). The location and the number of the 5 S DNA sites have been conserved during species divergence. On the basis of these karyological data, as well as of results obtained through a preliminary restriction enzyme analysis of the ribosomal and genomic DNAs, the phyletic relationships among the European Hydromantes species are discussed.  相似文献   

14.
Summary Somatic chromosomes of two cultivais of Cajanus cajan, eight species of Atylosia (A. albicans, A. cajanifolia, A. lineata, A. platycarpa, A. scarabaeoides, A. serica, A. trinervia and A. volubilis), and of Rhynchosia rothii were analysed. All species had 2n=22. Eight of the 10 species studied had two pairs of satchromosomes while A. scarabaeoides and A. sericea had only one sat-chromosome pair. Based on relative chromosome length (L%), arm ratio (pa-value) and presence or absence of secondary constriction, a karyotype formula for each species was formulated. Based on these parameters the chromosome pairs could also be assigned to groups ranging from 8 to 10 in different species. Except for the asymmetrical karyotype of A. albicans, the other species had rather moderately symmetrical karyotypes.  相似文献   

15.
The Ranunculus alpestris-group comprises six white-flowered species growing in mostly alpine zones of central and southern European mountains. They all are diploid with 2n=16 chromosomes. The common karyotype of the group was established based on 75 metaphases (6–26 metaphases per species). The haploid karyotype consists of four metacentric (chromosomes 1, 3, 6, 7) and four more or less subtelocentric chromosomes (2, 4, 5, 8). This karyotype is similar to that of other white-flowered European Ranunculus species as well as the yellow-flowered R. thora-group. Analysis of karyotypes partly confirms relationships inferred from molecular phylogenies. Species with this karyotype are placed on rather basal branches in existing phylogenies, which may indicate that this karyotype is primitive within the genus Ranunculus.  相似文献   

16.
The systematics of the Hypochaeridinae subtribe was re-evaluated based on a combination of published and new molecular data. Newly found clades were additionally characterized using published and new phytochemical data. In addition to flavonoids and sesquiterpene lactones, which had been reviewed recently as chemosystematic markers in the Cichorieae, we analysed the reported occurrences of caffeic acid derivatives and their potential as chemosystematic markers. Our molecular results required further changes in the systematics of the genus Leontodon. Based on previous molecular data, Leontodon s.l.—i.e. including sections Asterothrix, Leontodon, Thrincia, Kalbfussia, and Oporinia (Widder 1975)—had been split into the genera Leontodon s.str. (sections Asterothrix, Leontodon, and Thrincia) and Scorzoneroides (sections Kalbfussia and Oporinia). Instead of splitting Leontodon into even a higher number of segregate genera we propose to include Hedypnois into Leontodon s.str. and here into section Leontodon. Moreover, sections Asterothrix and Leontodon should be merged into a single section Leontodon. The newly defined genus Leontodon is characterised by the unique occurrence of hydroxyhypocretenolides. The monophyly of the genus Hypochaeris is neither supported nor contradicted and potentially comprises two separate molecular clades. The clade Hypochaeris I comprises the majority of the European and Mediterranean as well as all South American taxa of Hypochaeris s.l. while the clade Hypochaeris II encompasses only H. achyrophorus L., H. glabra L., H. laevigata Benth. & Hook.f., and H. radicata L.  相似文献   

17.
The karyotypes of four gerreids of the western Atlantic Ocean are documented. A diploid chromosome complement of 48 telocentric chromosomes was found in the four species (2N=48t, fundamental number FN=48). No differences were detected either in the number of chromosomes of the standard karyotype, in their karyotype size, or between the karyotypes derived from male or female specimens of any of the species. Chromosome length decreased progressively and slightly from pair 1 to pair 24. The Ag–NOR karyotypes of E. argenteus and E. harengulus were characterized by the position of the nucleolar organizer regions next to the centromere in chromosome pair 1, whereas in E. gula and E. plumieri Ag–NORs were detected in pair 4. The other 46 chromosomes showed a light staining of the centromere with no terminal or intermediate heterochromatic blocks. All Eucinostomus species showed Ag–NORs of similar size, while Eugerres plumieri showed Ag–NORs 10–20% larger than Eucinostomus species. A combination of size and position of the Ag–NORs identified E. gula, while size alone identified E. plumieri. However, the ancestral state for size and position of Ag–NORs could not be established. There was no differential staining of the chromosomes by G-banding. The karyotype of the gerreids appears similar to the hypothetical ancestral karyotype of fish. The phylogenetic relationships among these species could not be established because of the lack of chromosome G-bands. Most likely this indicates a homogeneous distribution of GC nucleotides in the chromosomes.  相似文献   

18.
The chromosome numbers of Dugesia japonica Ichikawa et Kawakatsu, 1964, are n = 8, 2x = 16 and 3x = 24; those of Dugesia ryukyuensis Kawakatsu, 1976, are n = 7, 2x = 14 and 3x = 21. The karyotypes of both species include diploid, triploid and mixoploid; aneuploidic and mixoaneuploidic karyotypes may occur. In 785 specimens studied of D. japonica, the occurrence rates of specimens having each karyotype are substantially the same (29–37%). Diploid sexual specimens represented nearly 10% of the total and virtually no triploid or mixoploid sexual specimens were found. The diploid karyotype can be inherited by both sexual and asexual reproduction; the triploid and mixoploid karyotypes will be inherited only by asexual reproduction. In 51 specimens studied of D. ryukyuensis, the different karyotypes are diploid (ca 39%), triploid (ca 57%) and mixoploid (ca 4%). Diploid sexual specimens represented nearly 25% of the total; sexual specimens with tripooidic karyotypes made up nearly 27%. The diploid, triploid and mixoploid karyotypes were also found in juveniles hatched from cocoons. The diploid karytyype is inherited by both sexual and asexual reproductions; the other karyotypes may be inherited by parthenogenesis or self-fertilization (including pseudogamy) and asexual reproduction.  相似文献   

19.
H9, H10, and H11 are major dominant resistance genes in wheat, expressing antibiosis against Hessian fly [(Hf) Mayetiola destructor (Say)] larvae. Previously, H9 and H10 were assigned to chromosome 5A and H11 to 1A. The objectives of this study were to identify simple-sequence-repeat (SSR) markers for fine mapping of these genes and for marker-assisted selection in wheat breeding. Contrary to previous results, H9 and H10 did not show linkage with SSR markers on chromosome 5A. Instead, H9, H10, and H11 are linked with SSR markers on the short arm of chromosome 1A. Both H9 and H10 are tightly linked to flanking markers Xbarc263 and Xcfa2153 within a genetic distance of 0.3–0.5 cM. H11 is tightly linked to flanking markers Xcfa2153 and Xbarc263 at genetic distances of 0.3 cM and 1.7 cM. Deletion bin mapping assigned these markers and genes to the distal 14% of chromosome arm 1AS, where another Hf-resistance gene, Hdic (derived from emmer wheat), was also mapped previously. Marker polymorphism results indicated that a small terminal segment of chromosome 1AS containing H9 or H10 was transferred from the donor parent to the wheat lines Iris or Joy, and a small intercalary fragment carrying H11 was transferred from the resistant donor to the wheat line Karen. Our results suggest that H9, H10, H11, Hdic, and the previously identified H9- or H11-linked genes (H3, H5, H6, H12, H14, H15, H16, H17, H19, H28, and H29) may compose a cluster (or family) of Hf-resistance genes in the distal gene-rich region of wheat chromosome 1AS; and H10 most likely is the same gene as H9.Mention of commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

20.
The karyotypes and chromosome associations at meiosis in two types of natural hybrids, 7x and 8x, betweenDuchesnea chrysantha (2x) andD. indica (12x) were investigated. The 7x hybrid had a haploid chromosome set from each parent plant, whereas the 8x hybrid was considered to have a full set ofD. chrysantha and half a set ofD. indica. In the two hybrids, the chromosomes ofD. chrysantha andD. indica conjugated only slightly at meiosis. It is probable that no common genome set between the diploidD. chrysantha and the dodecaploidD. indica exists. The present evidence indicates thatD. chrysantha andD. indica should be considered to be distinct species, although they have sometimes been treated as a single species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号