首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brain GABA levels rise and plateau following prolonged administration of the irreversible GABA-transaminase inhibitor vigabatrin (γ-vinylGABA). Recently it has been shown that increased GABA levels reduces GAD67 protein, one of two major isoforms of glutamic acid decarboxylase (GAD). The effects of GABA elevation on GABA synthesis were assessed in vivo using1H and13C-edited NMR spectroscopy. Rates of turnover of cortical glutamate and GABA from intravenously administered [1-13C]glucose were measured in α-chloralose anesthetized rats 24 hours after receiving vigabatrin (500 mg/kg, i.p.) and in non-treated controls. GABA concentration was increased 2-fold at 24 hours (from 1.3±0.4 to 2.7±0.9 μmol/g) and GABA-T activity was inhibited by 60%. Tricarboxylic acid cycle flux was not affected by vigabatrin treatment compared to non-treated rats (0.47±0.19 versus 0.52±0.18 μmol/g, respectively). GABA-C2 fractional enrichment (FE) measured in acid extracts rose more slowly in vigabatrin-treated compared to nontreated rats, reaching >90% of the glutamate FE after 3 hours. In contrast, GABA FE≥glutamate FE in non-treated rats. A metabolic model consisting of a single glutamate pool failed to account for the rapid labeling of GABA from glutamate. Metabolic modelling analysis based on two (non-communicating) glutamate pools revealed a ∼70% decrease in the rate of GABA synthesis following vigabatrin-treatment, from 0.14 (non-treated) to 0.04 μmol/g/min (vigabatrin-treated). These findings, in conjunction with the previously reported differential effects of elevated GABA on the GAD isoforms, suggests that GAD67 may account for a major fraction of cortical GABA synthesis in the α-chloralose anesthetized rat brain in vivo. Special issue dedicated to Dr. Herman Bachelard.  相似文献   

2.
Cellular GABA levels are determined by the dynamic balance between synthesis and catabolism and are regulated at the level of glutamate decarboxylase, precursor availability (e.g., glutamate and glutamine), and possibly GABA degradation. GABA levels rise and stabilize within hours in human cortex following orally administered vigabatrin, an irreversible inhibitor of GABA-T, suggesting potential product inhibition of GABA synthesis or enhanced GABA degradation through the non-inhibited GABA-T fraction. In this study time courses of the rise in cortical GABA were measured in anesthetized rats in vivo after vigabatrin treatment using localized (1)H magnetic resonance spectroscopy and the times to reach steady-state for a given dose were determined. Rates of GABA synthesis were estimated for the period of constant GABA level from the accumulation of [2-(13)C]GABA following a short intravenous infusion (20 min) of either [1,6-(13)C(2)]glucose or [2-(13)C]acetate. No evidence of product inhibition of glutamate decarboxylase by the increased GABA concentration or reduced synthesis from [1,6-(13)C(2)]glucose (control, 0.031+/-0.010; vigabatrin-treated, 0.037+/-0.004 micromol/g/min, P=0.30) or [2-(13)C]acetate (control, 0.078+/-0.010; vigabatrin-treated, 0.084+/-0.006 micromol/g/min, P=0.42) was found. Fractional changes in steady-state GABA levels and GABA-T activities 5-6 h after vigabatrin treatment were approximately equal. The lack of change in GABA synthesis (and GABA catabolic flux for constant GABA levels) suggests that GABA-T has a near-zero flux control coefficient in vivo-capable of greatly altering the steady-state GABA concentration but exerting little or no control on GABA synthesis or GABA/glutamine cycling flux. The findings are consistent with a Michaelis-Menten kinetic model whereby cellular GABA levels increase until flux through the remaining (uninhibited) transaminase equals the rate of GABA synthesis. The findings suggest that astroglia may be the site of continuing GABA catabolism after acute vigabatrin treatment.  相似文献   

3.
Brain [2-(13)C]gamma-aminobutyric acid (GABA) signal derived from the glia-specific substrate [2-(13)C]acetate reflects the extent of the GABA-glutamine neurotransmitter cycling between GABAergic neurons and glial cells. We report, for the first time, in vivo quantification of the GABA-glutamine cycling flux. The GABA-glutamine cycling flux rate was determined to be 1.8+/-0.4 micromol/(gh) (mean+/-S.D., n=6, approximately 6% of total tricarboxylic acid cycle rate) in the neocortex of vigabatrin-treated rats. The relatively small magnitude of glial contribution to the clearance of extracellular GABA measured in this study provided in vivo evidence to support the concept of a significant neuronal reuptake of GABA, which short-circuits the GABA-glutamine cycling pathway for repletion of released neurotransmitter GABA.  相似文献   

4.
5.
The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.  相似文献   

6.
7.
Testosterone and oestradiol can modulate GABA synthesis in sexually regressed goldfish. Here we investigated their effects on the mRNA expression of two isoforms of the GABA synthesizing enzyme glutamate decarboxylase (GAD(65) and GAD(67), EC 4.1.1.15). Full-length GAD clones were isolated from a goldfish cDNA library and sequenced. Goldfish GAD(65) encodes a polypeptide of 583 amino acid residues, which is 77% identical to human GAD(65). Goldfish GAD(67) encodes a polypeptide of 587 amino acid residues and is 82% identical to human GAD(67). Goldfish GAD(65) and GAD(67) are 63% identical. Sexually regressed male and female goldfish were implanted with solid silastic pellets containing testosterone, oestradiol or no steroid. Semiquantitative PCR analysis showed that oestradiol significantly increased GAD(65) mRNA expression in female hypothalamus and telencephalon, while testosterone resulted in a significant increase only in telencephalon. GAD(67) mRNA levels were not affected by steroids in females. In contrast, both steroids induced significant decreases of GAD(65) and GAD(67) mRNA levels in male hypothalamus, but had no effect on GAD mRNA expression in male telencephalon. Our results indicate that modulation of GAD mRNA expression is a possible mechanism for steroid action on GABA synthesis, which may have opposite effects in males and females.  相似文献   

8.
Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.  相似文献   

9.
GABA is synthesized from glutamate by glutamate decarboxylase (GAD), which exists in two isoforms, that is, GAD65 and GAD67. In line with GAD65 being located in the GABAergic synapse, several studies have demonstrated that this isoform is important during sustained synaptic transmission. In contrast, the functional significance of GAD65 in the maintenance of GABA destined for extrasynaptic tonic inhibition is less well studied. Using GAD65-/- and wild type GAD65+/+ mice, this was examined employing the cortical wedge preparation, a model suitable for investigating extrasynaptic GABA(A) receptor activity. An impaired tonic inhibition in GAD65-/- mice was revealed demonstrating a significant role of GAD65 in the synthesis of GABA acting extrasynaptically. The correlation between an altered tonic inhibition and metabolic events as well as the functional and metabolic role of GABA synthesized by GAD65 was further investigated in vivo. Tonic inhibition and the demand for biosynthesis of GABA were augmented by injection of kainate into GAD65-/- and GAD65+/+ mice. Moreover, [1-(13) C]glucose and [1,2-(13) C]acetate were administered to study neuronal and astrocytic metabolism concomitantly. Subsequently, cortical and hippocampal extracts were analyzed by NMR spectroscopy and mass spectrometry, respectively. Although seizure activity was induced by kainate, neuronal hypometabolism was observed in GAD65+/+ mice. In contrast, kainate evoked hypermetabolism in GAD65-/- mice exhibiting deficiencies in tonic inhibition. These findings underline the importance of GAD65 for synthesis of GABA destined for extrasynaptic tonic inhibition, regulating epileptiform activity.  相似文献   

10.
Culturing mouse cerebellar neurones (predominantly glutamatergic) in the presence of [1-(13)C]glucose for 7 days resulted in a surprisingly extensive labelling of the inhibitory neurotransmitter GABA, the average content and labelling of which were 20 +/- 4 nmol/mg protein and 20 +/- 4%, respectively. Cultures of neocortical neurones (predominantly GABAergic) had under similar conditions a GABA content and labelling of 32 +/- 2 nmol/mg protein and 21 +/- 2%. The cerebellar cultures contained only 6% glutamate decarboxylase (GAD)-positive neurones when immunolabelled using a GAD67 antibody, while a dense network of neurones in the neocortical cultures stained positively for GAD67. Exposure of the cerebellar cultures to 50 microm kainic acid (KA) which is known to eliminate vesicular release of GABA, only marginally affected GABA labelling and cellular content. Likewise this treatment had no effect on the number of GAD67-positive neurones but a massive punctate immunostaining observed in control cultures was essentially eliminated. Increasing the KA concentration to 0.5 mm in the culture medium for 7 days led to a reduction of GABA labelling and content compared to cerebellar cultures not exposed to KA. Although it is likely that this large capacity for GABA synthesis resides in the relatively few GAD-positive neurones, it seems unlikely that they could account for the large average GABA content in the cultures. Therefore it must be concluded that the newly synthesized GABA is redistributed among the majority of the cells in these cultures, i.e. the glutamatergic neurones.  相似文献   

11.
Brain extraction of (18)F-labeled 2-fluoro-2-deoxy-D-glucose (FDG) was significantly higher in pentylene tetrazole (PTZ)-treated rats (32 +/- 4%) than controls (25 +/- 4%). The FDG permeability-surface area product (PS) was also significantly higher with PTZ treatment (0.36 +/- 0.05 ml. min(-1). g(-1)) than in controls (0.20 +/- 0.06 ml. min(-1). g(-1)). Cerebral blood flow rates were also elevated by 50% in seizures. The internal carotid artery perfusion technique indicated mean [(14)C]glucose clearance (and extraction) was increased with PTZ treatment, and seizures increased the PS by 37 +/- 16% (P < 0.05) in cortical regions. Because kinetic analyses suggested the glucose transporter half-saturation constant (K(m)) was unchanged by PTZ, we derived estimates of 1) treated and 2) control maximal transporter velocities (V(max)) and 3) a single K(m). In cortex, the glucose transporter V(max) was 42 +/- 11% higher (P < 0.05) in PTZ-treated animals (2.46 +/- 0.34 micromol. min(-1). g(-1)) than in control animals (1.74 +/- 0.26 micromol. min(-1). g(-1)), and the K(m) = 9.5 +/- 1.6 mM. Blood-brain barrier (BBB) V(max) was 31 +/- 10% greater (P < 0.05) in PTZ-treated (2.36 +/- 0. 30 micromol. min(-1). g(-1)) than control subcortex (1.80 +/- 0.25 micromol. min(-1). g(-1)). We conclude acute upregulation of BBB glucose transport occurs within 3 min of an initial seizure. Transporter V(max) and BBB glucose permeability increase by 30-40%.  相似文献   

12.
Childhood absence epilepsy (CAE) is a well-defined generalized epilepsy syndrome clinically characterized by frequent absence seizures. The aim of this study was to assess the activity of GABA transaminase (GABA-T) and the kinetic parameters of GABA uptake in platelets from patients with CAE. We studied 13 patients with CAE and eight sex- and age-matched controls. The mean activity of GABA-T was lower in patients with CAE than in controls (1.22+/-0.05 vs. 1.75+/-0.10 micromol/min/kg protein). The capacity of GABA uptake into the platelets was higher in patients using valproate (0.66+/-0.09 micromol/min/kg protein), but not in those using ethosuximide (0.34+/-0.05 micromol/min/kg protein), when compared to controls (0.26+/-0.06 micromol/min/kg protein). The affinity of the transporters was not altered. The observed peripheral alterations may indicate impaired function of brain GABAergic systems in children with absence epilepsy.  相似文献   

13.
Abstract: Defective herpes simplex virus (HSV) vectors containing glutamic acid decarboxylase (GAD) cDNAs, either GAD65 or GAD67, were used to examine GAD function and GABA synthesis in rat cortical astrocytes, CNS cells that do not endogenously synthesize GABA. GAD vector infection resulted in isoform-specific expression of GAD as determined by western blotting and immunohistochemistry. Astrocytes infected with a β-galactosidase vector or uninfected expressed no GAD and contained no detectable GABA. GABA was detected in glial fibrillary acid protein-expressing cells after GAD65 vector infection. Significant amounts of GABA, as determined by HPLC, were synthesized in cultures infected with either GAD vector. The levels of GABA in GAD67 vector-infected cells were almost twofold higher than in GAD65 vector-infected cells. Vector infection did not alter levels of other intracellular amino acids. GABA was tonically released from astrocytes infected with the GAD67 vector, but no increase in release could be detected after treatment of the cells with K+, veratridine, glutamate, or bradykinin. The ability to transduce astrocytes so that they express GAD and thereby increase GABA levels provides a potential strategy for the treatment of neurologic disorders associated with hyperexcitable or diminished inhibitory activity.  相似文献   

14.
Idiopathic generalized epilepsy (IGE) syndromes represent about 30% of all epilepsies. They have strong, but elusive, genetic components and sex-specific seizure expression. Multiple linkage and population association studies have connected the bromodomain-containing gene BRD2 to forms of IGE. In mice, a null mutation at the homologous Brd2 locus results in embryonic lethality while heterozygous Brd2+/- mice are viable and overtly normal. However, using the flurothyl model, we now show, that compared to the Brd2+/+ littermates, Brd2+/- males have a decreased clonic, and females a decreased tonic-clonic, seizure threshold. Additionally, long-term EEG/video recordings captured spontaneous seizures in three out of five recorded Brd2+/- female mice. Anatomical analysis of specific regions of the brain further revealed significant differences in Brd2+/- vs +/+ mice. Specifically, there were decreases in the numbers of GABAergic (parvalbumin- or GAD67-immunopositive) neurons along the basal ganglia pathway, i.e., in the neocortex and striatum of Brd2+/- mice, compared to Brd2+/+ mice. There were also fewer GABAergic neurons in the substantia nigra reticulata (SNR), yet there was a minor, possibly compensatory increase in the GABA producing enzyme GAD67 in these SNR cells. Further, GAD67 expression in the superior colliculus and ventral medial thalamic nucleus, the main SNR outputs, was significantly decreased in Brd2+/- mice, further supporting GABA downregulation. Our data show that the non-channel-encoding, developmentally critical Brd2 gene is associated with i) sex-specific increases in seizure susceptibility, ii) the development of spontaneous seizures, and iii) seizure-related anatomical changes in the GABA system, supporting BRD2's involvement in human IGE.  相似文献   

15.
The inhibitory neurotransmitter γ-amino butyric acid (GABA) is synthesized by two isoforms of the enzyme glutamic acid decarboxylase (GAD): GAD65 and GAD67. Whereas GAD67 is constitutively active and produces >90% of GABA in the central nervous system, GAD65 is transiently activated and augments GABA levels for rapid modulation of inhibitory neurotransmission. Hydrophobic lipid modifications of the GAD65 protein target it to Golgi membranes and synaptic vesicles in neuroendocrine cells. In contrast, the GAD67 protein remains hydrophilic but has been shown to acquire membrane association by heterodimerization with GAD65. Here, we identify a second mechanism that mediates robust membrane anchoring, axonal targeting, and presynaptic clustering of GAD67 but that is independent of GAD65. This mechanism is abolished by a leucine-103 to proline mutation that changes the conformation of the N-terminal domain but does not affect the GAD65-dependent membrane anchoring of GAD67. Thus two distinct mechanisms target the constitutively active GAD67 to presynaptic clusters to facilitate accumulation of GABA for rapid delivery into synapses.  相似文献   

16.
Regulation of γ-Aminobutyric Acid Synthesis in the Brain   总被引:3,自引:3,他引:0  
Abstract: γ-Aminobutyric acid (GABA) is synthesized in brain in at least two compartments, commonly called the transmitter and metabolic compartments, and because reglatory processes must serve the physiologic function of each compartment, the regulation of GABA synthesis presents a complex problem. Brain contains at least two molecular forms of glutamate decarboxylase (GAD), the principal synthetic enzyme for GABA. Two forms, termed GAD65 and GAD67, are the products of two genes and differ in sequence, molecular weight, interaction with the cofactor, pyridoxal 5′-phosphate (pyridoxal-P), and level of expression among brain regions. GAD65 appears to be localized in nerve terminals to a greater degree than GAD67, which appears to be more uniformly distributed throughout the cell. The interaction of GAD with pyridoxal-P is a major factor in the short-term regulation of GAD activity. At least 50% of GAD is present in brain as apoenzyme (GAD without bound cofactor; apoGAD), which serves as a reservoir of inactive GAD that can be drawn on when additional GABA synthesis is needed. A substantial majority of apoGAD in brain is accounted for by GAD65, but GAD67 also contributes to the pool of apoGAD. The apparent localization of GAD65 in nerve terminals and the large reserve of apo-GAD65 suggest that GAD65 is specialized to respond to short-term changes in demand for transmitter GABA. The levels of apoGAD and the holoenzyme of GAD (holoGAD) are controlled by a cycle of reactions that is regulated by physiologically relevant concentrations of ATP and other polyanions and by inorganic phosphate, and it appears possible that GAD activity is linked to neuronal activity through energy metabolism. GAD is not saturated by glutamate in synaptosomes or cortical slices, but there is no evidence that GABA synthesis in vivo is regulated physiologically by the availability of glutamate. GABA competitively inhibits GAD and converts holo- to apoGAD, but it is not clear if intracellular GABA levels are high enough to regulate GAD. There is no evidence of short-term regulation by second messengers. The syntheses of GAD65 and GAD67 proteins are regulated separately. GAD67 regulation is complex; it not only is present as apoGAD67, but the expression of GAD67 protein is regulated by two mechanisms: (a) by control of mRNA levels and (b) at the level of translation or protein stability. The latter mechanism appears to be mediated by intracellular GABA levels.  相似文献   

17.
The GABA-synthesizing enzyme glutamic acid decarboxylase (GAD) is expressed in pancreatic beta-cells and GABA has been suggested to play a role in islet cell development and function. Mouse beta-cells predominantly express the larger isoform of the enzyme, GAD67, and very low levels of the second isoform, GAD65. Yet GAD65 has been shown to be a target of very early autoimmune T-cell responses associated with beta-cell destruction in the non-obese diabetic (NOD) mouse model of Type 1 diabetes. Mice deficient in GAD67, GAD65 or both were used to assess whether GABA is important for islet cell development, and whether GAD65 is required for initiation of insulitis and progression to Type 1 diabetes in the mouse. Lack of either GAD65 or GAD67 did not effect the development of islet cells and the general morphology of islets. When GAD65-/-(129/Sv) mice were backcrossed into the NOD strain for four generations, GAD65-deficient mice developed insulitis similar to GAD65+/+ mice. Furthermore, at the low penetrance of diabetes in this backcross, GAD65-deficient mice developed disease at the same rate and incidence as wildtype mice. The results suggest that GABA generated by either GAD65 or GAD67 is not critically involved in islet formation and that GAD65 expression is not an absolute requirement for development of autoimmune diabetes in the NOD mouse.  相似文献   

18.
Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.  相似文献   

19.
Intermittent hypoxia (IH) associated with sleep apnea leads to cardio-respiratory morbidities. Previous studies have shown that IH alters the synthesis of neurotransmitters including catecholamines and neuropeptides in brainstem regions associated with regulation of cardio-respiratory functions. GABA, a major inhibitory neurotransmitter in the CNS, has been implicated in cardio-respiratory control. GABA synthesis is primarily catalyzed by glutamic acid decarboxylase (GAD). In this study, we tested the hypothesis that IH like its effect on other transmitters also alters GABA synthesis. The impact of IH on GABA synthesis was investigated in pheochromocytoma 12 cells, a neuronal cell line which is known to express active form of GAD67 in the cytosolic fraction and also assessed the underlying mechanisms contributing to IH-evoked response. Exposure of cell cultures to IH decreased GAD67 activity and GABA level. IH-evoked decrease in GAD67 activity was caused by increased cAMP - protein kinase A (PKA) - dependent phosphorylation of GAD67, but not as a result of changes in either GAD67 mRNA or protein expression. PKA inhibitor restored GAD67 activity and GABA levels in IH treated cells. Pheochromocytoma 12 cells express dopamine 1 receptor (D1R), a G-protein coupled receptor whose activation increased adenylyl cyclase activity. Treatment with either D1R antagonist or adenylyl cyclase inhibitor reversed IH-evoked GAD67 inhibition. Silencing D1R expression with siRNA reversed cAMP elevation and GAD67 inhibition by IH. These results provide evidence for the role of D1R-cAMP-PKA signaling in IH-mediated inhibition of GAD67 via protein phosphorylation resulting in down-regulation of GABA synthesis.  相似文献   

20.
Gamma‐aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate‐limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin‐releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1–7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock‐out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 249–270, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号