首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Residues comprising the guanine nucleotide-binding sites of the α subunits of heterotrimeric (large) G-proteins (Gα subunits), as well as the Ras-related (small) G-proteins, are highly conserved. This is especially the case for the phosphate-binding loop (P-loop) where both Gα subunits and Ras-related G-proteins have a conserved serine or threonine residue. Substitutions for this residue in Ras and related (small) G-proteins yield nucleotide-depleted, dominant-negative mutants. Here we have examined the consequences of changing the conserved serine residue in the P-loop to asparagine, within a chimeric Gα subunit (designated αT*) that is mainly comprised of the α subunit of the retinal G-protein transducin and a limited region from the α subunit of Gi1. The αT*(S43N) mutant exhibits a significantly higher rate of intrinsic GDP-GTP exchange compared with wild-type αT*, with light-activated rhodopsin (R*) causing only a moderate increase in the kinetics of nucleotide exchange on αT*(S43N). The αT*(S43N) mutant, when bound to either GDP or GTP, was able to significantly slow the rate of R*-catalyzed GDP-GTP exchange on wild-type αT*. Thus, GTP-bound αT*(S43N), as well as the GDP-bound mutant, is capable of forming a stable complex with R*. αT*(S43N) activated the cGMP phosphodiesterase (PDE) with a dose-response similar to wild-type αT*. Activation of the PDE by αT*(S43N) was unaffected if either R* or β1γ1 alone was present, whereas it was inhibited when R* and the β1γ1 subunit were added together. Overall, our studies suggest that the S43N substitution on αT* stabilizes an intermediate on the G-protein activation pathway consisting of an activated G-protein-coupled receptor, a GTP-bound Gα subunit, and the β1γ1 complex.  相似文献   

2.
Exogenous or endogenous β2-adrenergic receptor agonists enhance alveolar epithelial fluid transport via a cAMP-dependent mechanism that protects the lungs from alveolar flooding in acute lung injury. However, impaired alveolar fluid clearance is present in most of the patients with acute lung injury and is associated with increased mortality, although the mechanisms responsible for this inhibition of the alveolar epithelial fluid transport are not completely understood. Here, we found that transforming growth factor β1 (TGF-β1), a critical mediator of acute lung injury, inhibits β2-adrenergic receptor agonist-stimulated vectorial fluid and Cl transport across primary rat and human alveolar epithelial type II cell monolayers. This inhibition is due to a reduction in the cystic fibrosis transmembrane conductance regulator activity and biosynthesis mediated by a phosphatidylinositol 3-kinase (PI3K)-dependent heterologous desensitization and down-regulation of the β2-adrenergic receptors. Consistent with these in vitro results, inhibition of the PI3K pathway or pretreatment with soluble chimeric TGF-β type II receptor restored β2-adrenergic receptor agonist-stimulated alveolar epithelial fluid transport in an in vivo model of acute lung injury induced by hemorrhagic shock in rats. The results demonstrate a novel role for TGF-β1 in impairing the β- adrenergic agonist-stimulated alveolar fluid clearance in acute lung injury, an effect that could be corrected by using PI3K inhibitors that are safe to use in humans.  相似文献   

3.
The dysregulation of EGF family ligand cleavage has severe consequences for the developing as well as the adult organism. Therefore, their production is highly regulated. The limiting step is the ectodomain cleavage of membrane-bound precursors by one of several a disintegrin and metalloprotease (ADAM) metalloproteases, and understanding the regulation of cleavage is an important goal of current research. We have previously reported that in mouse lung epithelial cells, the pro-EGF ligands TGFα, neuregulin 1β (NRG), and heparin-binding EGF are differentially cleaved depending on the cleavage stimulus (Herrlich, A., Klinman, E., Fu, J., Sadegh, C., and Lodish, H. (2008) FASEB J.). In this study in mouse embryonic fibroblasts that lack different ADAMs, we show that induced cleavage of EGF ligands can involve the same substrate-specific metalloprotease but does require different stimulus-dependent signaling pathways. Cleavage was stimulated by phorbol ester (12-O-tetradecanoylphorbol-13-acetate (TPA), a mimic of diacylglycerol and PKC activator), hypertonic stress, lysophosphatidic acid (LPA)-induced G protein-coupled receptor activation, or by ionomycin-induced intracellular calcium release. Although ADAMs showed substrate preference (ADAM17, TGFα and heparin-binding EGF; and ADAM9, NRG), substrate cleavage differed substantially with the stimulus, and cleavage of the same substrate depended on the presence of different, sometimes multiple, PKC isoforms. For instance, classical PKC was required for TPA-induced but not hypertonic stress-induced cleavage of all EGF family ligands. Inhibition of PKCζ enhanced NRG release upon TPA stimulation, but it blocked NRG release in response to hypertonic stress. Our results suggest a model in which substantial regulation of ectodomain cleavage occurs not only on the metalloprotease level but also on the level of the substrate or of a third protein.  相似文献   

4.
5.
In previous studies, we observed that mice knocked out for the serotonin-2B receptor (5-HT2BR) show defects in bone homeostasis. The present work focuses on the downstream targets relaying the anabolic function of this receptor in osteoblasts. A functional link between the 5-HT2BR and the activity of the tissue-nonspecific alkaline phosphatase (TNAP) is established using the C1 osteoprogenitor cell line. During C1 osteogenic differentiation, both 5-HT2BR and TNAP mRNA translations are delayed with respect to extracellular matrix deposition. Once the receptor is expressed, it constitutively controls TNAP activity at a post-translational level along the overall period of mineral deposition. Indeed, pharmacological inhibition of the 5-HT2BR intrinsic activity or shRNA-mediated 5-HT2BR knockdown prevents TNAP activation, but not its mRNA translation. In contrast, agonist stimulation of the receptor further increases TNAP activity during the initial mineralization phase. Building upon our previous observations that the 5-HT2BR couples with the phospholipase A2 pathway and prostaglandin production at the beginning of mineral deposition, we show that the 5-HT2BR controls leukotriene synthesis via phospholipase A2 at the terminal stages of C1 differentiation. These two 5-HT2BR-dependent eicosanoid productions delineate distinct time windows of TNAP regulation during the osteogenic program. Finally, prostaglandins or leukotrienes are shown to relay the post-translational activation of TNAP via stimulation of the phosphatidylinositol-specific phospholipase C. In agreement with the above findings, primary calvarial osteoblasts from 5-HT2BR-null mice exhibit defects in TNAP activity.  相似文献   

6.
The transforming growth factor-beta (TGF-β) superfamily is one of the most diversified cell signaling pathways and regulates many physiological and pathological processes. Recently, neuropilin-1 (NRP-1) was reported to bind and activate the latent form of TGF-β1 (LAP-TGF-β1). We investigated the role of NRP-1 on Smad signaling in stromal fibroblasts upon TGF-β stimulation. Elimination of NRP-1 in stromal fibroblast cell lines increases Smad1/5 phosphorylation and downstream responses as evidenced by up-regulation of inhibitor of differentiation (Id-1). Conversely, NRP-1 loss decreases Smad2/3 phosphorylation and its responses as shown by down-regulation of α-smooth muscle actin (α-SMA) and also cells exhibit more quiescent phenotypes and growth arrest. Moreover, we also observed that NRP-1 expression is increased during the culture activation of hepatic stellate cells (HSCs), a liver resident fibroblast. Taken together, our data suggest that NRP-1 functions as a key determinant of the diverse responses downstream of TGF-β1 that are mediated by distinct Smad proteins and promotes myofibroblast phenotype.  相似文献   

7.
The mechanisms whereby the parathyroid hormone (PTH) exerts its anabolic action on bone are incompletely understood. We previously showed that inhibition of ERK1/2 enhanced Smad3-induced bone anabolic action in osteoblasts. These findings suggested the hypothesis that changes in gene expression associated with the altered Smad3-induced signaling brought about by an ERK1/2 inhibitor would identify novel bone anabolic factors in osteoblasts. We therefore performed a comparative DNA microarray analysis between empty vector-transfected mouse osteoblastic MC3T3-E1 cells and PD98059-treated stable Smad3-overexpressing MC3T3-E1 cells. Among the novel factors, Tmem119 was selected on the basis of its rapid induction by PTH independent of later increases in endogenous TGF-β. The levels of Tmem119 increased with time in cultures of MC3T3-E1 cells and mouse mesenchymal ST-2 cells committed to the osteoblast lineage by BMP-2. PTH stimulated Tmem119 levels within 1 h as determined by Western blot analysis and immunocytochemistry in MC3T3-E1 cells. MC3T3-E1 cells stably overexpressing Tmem119 exhibited elevated levels of Runx2, osteocalcin, alkaline phosphatase, and β-catenin, whereas Tmem119 augmented BMP-2-induced Runx2 levels in mesenchymal cells. Tmem119 interacted with Runx2, Smad1, and Smad5 in C2C12 cells. In conclusion, we identified a Smad3-related factor, Tmem119, that is induced by PTH and promotes differentiation in mouse osteoblastic cells. Tmem119 is an important molecule in the pathway downstream of PTH and Smad3 signaling in osteoblasts.  相似文献   

8.
β2-Adrenergic receptors (β2-AR) are low abundance, integral membrane proteins that mediate the effects of catecholamines at the cell surface. Whereas the processes governing desensitization of activated β2-ARs and their subsequent removal from the cell surface have been characterized in considerable detail, little is known about the mechanisms controlling trafficking of neo-synthesized receptors to the cell surface. Since the discovery of the signal peptide, the targeting of the integral membrane proteins to plasma membrane has been thought to be determined by structural features of the amino acid sequence alone. Here we report that localization of translationally silenced β2-AR mRNA to the peripheral cytoplasmic regions is critical for receptor localization to the plasma membrane. β2-AR mRNA is recognized by the nucleocytoplasmic shuttling RNA-binding protein HuR, which silences translational initiation while chaperoning the mRNA-protein complex to the cell periphery. When HuR expression is down-regulated, β2-AR mRNA translation is initiated prematurely in perinuclear polyribosomes, leading to overproduction of receptors but defective trafficking to the plasma membrane. Our results underscore the importance of the spatiotemporal relationship between β2-AR mRNA localization, translation, and trafficking to the plasma membrane, and establish a novel mechanism whereby G protein-coupled receptor (GPCR) responsiveness is regulated by RNA-based signals.  相似文献   

9.
The adenylyl cyclase activator forskolin facilitates synaptic transmission presynaptically via cAMP-dependent protein kinase (PKA). In addition, cAMP also increases glutamate release via PKA-independent mechanisms, although the downstream presynaptic targets remain largely unknown. Here, we describe the isolation of a PKA-independent component of glutamate release in cerebrocortical nerve terminals after blocking Na+ channels with tetrodotoxin. We found that 8-pCPT-2′-O-Me-cAMP, a specific activator of the exchange protein directly activated by cAMP (Epac), mimicked and occluded forskolin-induced potentiation of glutamate release. This Epac-mediated increase in glutamate release was dependent on phospholipase C, and it increased the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Moreover, the potentiation of glutamate release by Epac was independent of protein kinase C, although it was attenuated by the diacylglycerol-binding site antagonist calphostin C. Epac activation translocated the active zone protein Munc13-1 from soluble to particulate fractions; it increased the association between Rab3A and RIM1α and redistributed synaptic vesicles closer to the presynaptic membrane. Furthermore, these responses were mimicked by the β-adrenergic receptor (βAR) agonist isoproterenol, consistent with the immunoelectron microscopy and immunocytochemical data demonstrating presynaptic expression of βARs in a subset of glutamatergic synapses in the cerebral cortex. Based on these findings, we conclude that βARs couple to a cAMP/Epac/PLC/Munc13/Rab3/RIM-dependent pathway to enhance glutamate release at cerebrocortical nerve terminals.  相似文献   

10.
Acute fatty acid (FA) exposure potentiates glucose-stimulated insulin secretion in β cells through metabolic and receptor-mediated effects. We assessed the effect of fatty acids on the dynamics of the metabolome in INS-1 cells following exposure to [U-13C]glucose to assess flux through metabolic pathways. Metabolite profiling showed a fatty acid-induced increase in long chain acyl-CoAs that were rapidly esterified with glucose-derived glycerol-3-phosphate to form lysophosphatidic acid, mono- and diacylglycerols, and other glycerolipids, some implicated in augmenting insulin secretion. Glucose utilization and glycolytic flux increased, along with a reduction in the NADH/NAD+ ratio, presumably by an increase in conversion of dihydroxyacetone phosphate to glycerol-3-phosphate. The fatty acid-induced increase in glycolysis also resulted in increases in tricarboxylic cycle flux and oxygen consumption. Inhibition of fatty acid activation of FFAR1/GPR40 by an antagonist decreased glycerolipid formation, attenuated fatty acid increases in glucose oxidation, and increased mitochondrial FA flux, as evidenced by increased acylcarnitine levels. Conversely, FFAR1/GPR40 activation in the presence of low FA increased flux into glycerolipids and enhanced glucose oxidation. These results suggest that, by remodeling glucose and lipid metabolism, fatty acid significantly increases the formation of both lipid- and TCA cycle-derived intermediates that augment insulin secretion, increasing our understanding of mechanisms underlying β cell insulin secretion.  相似文献   

11.
Group II activators of G-protein signaling play diverse functional roles through their interaction with Gαi, Gαt, and Gαo via a G-protein regulatory (GPR) motif that serves as a docking site for Gα-GDP. We recently reported the regulation of the AGS3-Gαi signaling module by a cell surface, seven-transmembrane receptor. Upon receptor activation, AGS3 reversibly dissociates from the cell cortex, suggesting that it may function as a signal transducer with downstream signaling implications, and this question is addressed in the current report. In HEK-293 and COS-7 cells expressing the α2A/D-AR and Gαi3, receptor activation resulted in the translocation of endogenous AGS3 and AGS3-GFP from the cell cortex to a juxtanuclear region, where it co-localized with markers of the Golgi apparatus (GA). The agonist-induced translocation of AGS3 was reversed by the α2-AR antagonist rauwolscine. The TPR domain of AGS3 was required for agonist-induced translocation of AGS3 from the cell cortex to the GA, and the translocation was blocked by pertussis toxin pretreatment or by the phospholipase Cβ inhibitor U73122. Agonist-induced translocation of AGS3 to the GA altered the functional organization and protein sorting at the trans-Golgi network. The regulated movement of AGS3 between the cell cortex and the GA offers unexpected mechanisms for modulating protein secretion and/or endosome recycling events at the trans-Golgi network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号