首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein kinase B/Akt protein kinases control an array of diverse functions, including cell growth, survival, proliferation, and metabolism. We report here the identification of pleckstrin homology-like domain family B member 1 (PHLDB1) as an insulin-responsive protein that enhances Akt activation. PHLDB1 contains a pleckstrin homology domain, which we show binds phosphatidylinositol PI(3,4)P2, PI(3,5)P2, and PI(3,4,5)P3, as well as a Forkhead-associated domain and coiled coil regions. PHLDB1 expression is increased during adipocyte differentiation, and it is abundant in many mouse tissues. Both endogenous and HA- or GFP-tagged PHLDB1 displayed a cytoplasmic disposition in unstimulated cultured adipocytes but translocated to the plasma membrane in response to insulin. Depletion of PHLDB1 by siRNA inhibited insulin stimulation of Akt phosphorylation but not tyrosine phosphorylation of IRS-1. RNAi-based silencing of PHLDB1 in cultured adipocytes also attenuated insulin-stimulated deoxyglucose transport and Myc-GLUT4-EGFP translocation to the plasma membrane, whereas knockdown of the PHLDB1 isoform PHLDB2 failed to attenuate insulin-stimulated deoxyglucose transport. Furthermore, adenovirus-mediated expression of PHLDB1 in adipocytes enhanced insulin-stimulated Akt and p70 S6 kinase phosphorylation, as well as GLUT4 translocation. These results indicate that PHLDB1 is a novel modulator of Akt protein kinase activation by insulin.  相似文献   

2.
Cyclic AMP inhibits Akt activity by blocking the membrane localization of PDK1   总被引:10,自引:0,他引:10  
Akt is a protein serine/threonine kinase that plays an important role in the mitogenic responses of cells to variable stimuli. Akt contains a pleckstrin homology (PH) domain and is activated by phosphorylation at threonine 308 and serine 473. Binding of 3'-OH phosphorylated phosphoinositides to the PH domain results in the translocation of Akt to the plasma membrane where it is activated by upstream kinases such as (phosphoinositide-dependent kinase-1 (PDK1). Over-expression of constitutively active forms of Akt promotes cell proliferation and survival, and also stimulates p70 S6 kinase (p70S6K). In many cells, an increase in levels of intracellular cyclic AMP (cAMP) diminishes cell growth and promotes differentiation, and in certain conditions cAMP is even antagonistic to the effect of growth factors. Here, we show that cAMP has inhibitory effects on the phosphatidylinositol 3-kinase/PDK/Akt signaling pathway. cAMP potently inhibits phosphorylation at threonine 308 and serine 473 of Akt, which is required for the protein kinase activities of Akt. cAMP also negatively regulates PDK1 by inhibiting its translocation to the plasma membrane, despite not affecting its protein kinase activities. Furthermore, when we co-expressed myristoylated Akt and PDK1 mutants which constitutively co-localize in the plasma membrane, Akt activity was no longer sensitive to raised intracellular cAMP concentrations. Finally, cAMP was also found to inhibit the lipid kinase activity of PI3K and to decrease the levels of phosphatidylinositol 3,4,5-triphosphate in vivo, which are required for the membrane localization of PDK1. Collectively, these data strongly support the theory that the cAMP-dependent signaling pathway inhibits Akt activity by blocking the coupling between Akt and its upstream regulators, PDK, in the plasma membrane.  相似文献   

3.
Akt1是一种丝氨酸/苏氨酸蛋白激酶,参与调节细胞的代谢、生长和发育。作为一种原癌基因,Akt1在许多人类肿瘤中表达显著增高,促进肿瘤转移;但也有研究表明,Akt1的活化可抑制乳腺癌细胞的侵袭和转移。为了深入探讨Akt1在肿瘤发生发展过程中的作用,采用RNA干扰技术沉默了高转移小鼠乳腺癌细胞4T1中Akt1的表达。MTT法检测发现,Akt1沉默不影响4T1细胞的增殖能力;Transwell法检测证明,Akt1沉默可降低4T1细胞的迁移能力。与以上结果相一致,Akt1沉默不影响乳腺癌形成原位瘤的能力,但显著降低其体内肺转移能力。结果表明,Akt1在小鼠乳腺癌细胞转移过程中发挥重要作用,并提示Akt1可能成为乳腺癌治疗的靶点。  相似文献   

4.
While pharmacological inhibition of Akt kinase has been regarded as a promising anti-cancer strategy, most of the Akt inhibitors that have been developed are enzymatic inhibitors that target the kinase active site of Akt. Another key cellular regulatory event for Akt activation is the translocation of Akt kinase to the cell membrane from the cytoplasm, which is accomplished through the pleckstrin homology (PH) domain of Akt. However, compounds specifically interacting with the PH domain of Akt to inhibit Akt activation are currently limited. Here we identified a compound, lancemaside A (LAN-A), which specifically binds to the PH domain of Akt kinase. First, our mass spectra analysis of cellular Akt kinase isolated from cells treated with LAN-A revealed that LAN-A specifically binds to the PH domain of cellular Akt kinase. Second, we observed that LAN-A inhibits the translocation of Akt kinase to the membrane and thus Akt activation, as examined by the phosphorylation of various downstream targets of Akt such as GSK3β, mTOR and BAD. Third, in a co-cultured cell model containing human lung epithelial cancer cells (A549) and normal human primary lung fibroblasts, LAN-A specifically restricts the growth of the A549 cells. LAN-A also displayed anti-proliferative effects on various human cancer cell lines. Finally, in the A549-luciferase mouse transplant model, LAN-A effectively inhibited A549 cell growth with little evident cytotoxicity. Indeed, the therapeutic index of LAN-A in this mouse model was >250, supporting that LAN-A is a potential lead compound for PH domain targeting as a safe anti-cancer Akt inhibitor.  相似文献   

5.
The serine–threonine protein kinase Akt, also known as protein kinase B, is a key component of the phosphoinositide 3-kinase (PI3K)–Akt–mTOR axis. Deregulated activation of this pathway is frequent in human tumors and Akt-dependent signaling appears to be critical in cell survival. PI3K activation generates 3-phosphorylated phosphatidylinositols that bind Akt pleckstrin homology (PH) domain. The blockage of Akt PH domain/phosphoinositides interaction represents a promising approach to interfere with the oncogenic potential of over-activated Akt. In the present study, phosphatidyl inositol mimics based on a β-glucoside scaffold have been synthesized as Akt inhibitors. The compounds possessed one or two lipophilic moieties of different length at the anomeric position of glucose, and an acidic or basic group at C-6. Docking studies, ELISA Akt inhibition assays, and cellular assays on different cell models highlighted 1-O-octadecanoyl-2-O-β-d-sulfoquinovopyranosyl-sn-glycerol as the best Akt inhibitor among the synthesized compounds, which could be considered as a lead for further optimization in the design of Akt inhibitors.  相似文献   

6.
The serine/threonine kinase Akt has three highly homologous isoforms in mammals: Akt1, Akt2, and Akt3. Recent studies indicate that Akt is often constitutively active in many types of human malignancy. Here we investigated the expression and function of Akt isoforms in human prostatic carcinoma cells. Initially, we used Western blotting to examine Akt expression in four human prostate cancer cell lines. Next, small-interfering RNAs (siRNAs) specific for Akt isoforms were used to elucidate their role on the in vitro and in vivo growth of prostate cancer cells. Expression of Akt1 and Akt2 was detected in all cells tested, but Akt3 was expressed only in cancer cells that did not express androgen receptors. All synthetic siRNAs against Akt isoforms suppressed their expression and inhibited the growth of cancer cells in vitro. Furthermore, atelocollagen-mediated systemic administration of siRNAs significantly reduced the growth of tumors that had been subcutaneously xenografted. These results suggest that targeting Akt isoforms could be an effective treatment for prostate cancers.  相似文献   

7.
Akt is an important oncoprotein, and data suggest a critical role for nuclear Akt in cancer development. We have previously described a rapid (3–5 min) and P2X7-dependent depletion of nuclear phosphorylated Akt (pAkt) and effects on downstream targets, and here we studied mechanisms behind the pAkt depletion. We show that cholesterol-lowering drugs, statins, or extracellular ATP, induced a complex and coordinated response in insulin-stimulated A549 cells leading to depletion of nuclear pAkt. It involved protein/lipid phosphatases PTEN, pleckstrin homology domain leucine-rich repeat phosphatase (PHLPP1 and -2), protein phosphatase 2A (PP2A), and calcineurin. We employed immunocytology, immunoprecipitation, and proximity ligation assay techniques and show that PHLPP and calcineurin translocated to the nucleus and formed complexes with Akt within 3 min. Also PTEN translocated to the nucleus and then co-localized with pAkt close to the nuclear membrane. An inhibitor of the scaffolding immunophilin FK506-binding protein 51 (FKBP51) and calcineurin, FK506, prevented depletion of nuclear pAkt. Furthermore, okadaic acid, an inhibitor of PP2A, prevented the nuclear pAkt depletion. Chemical inhibition and siRNA indicated that PHLPP, PP2A, and PTEN were required for a robust depletion of nuclear pAkt, and in prostate cancer cells lacking PTEN, transfection of PTEN restored the statin-induced pAkt depletion. The activation of protein and lipid phosphatases was paralleled by a rapid proliferating cell nuclear antigen (PCNA) translocation to the nucleus, a PCNA-p21cip1 complex formation, and cyclin D1 degradation. We conclude that these effects reflect a signaling pathway for rapid depletion of pAkt that may stop the cell cycle.  相似文献   

8.
The translocation of Akt, a serine/threonine kinase, to the plasma membrane is a critical step in the Akt activation pathway. It is established that membrane binding of Akt is mediated by direct interactions between its pleckstrin homology domain (PHD) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). There is now evidence that Akt activation in many breast cancer cells is also modulated by the calcium-binding protein, calmodulin (CaM). Upon EGF stimulation of breast cancer cells, CaM co-localizes with Akt at the plasma membrane to enhance activation. However, the molecular details of Akt(PHD) interaction with CaM are not known. In this study, we employed NMR, biochemical, and biophysical techniques to characterize CaM binding to Akt(PHD). Our data show that CaM forms a tight complex with the PHD of Akt (dissociation constant = 100 nm). The interaction between CaM and Akt(PHD) is enthalpically driven, and the affinity is greatly dependent on salt concentration, indicating that electrostatic interactions are important for binding. The CaM-binding interface in Akt(PHD) was mapped to two loops adjacent to the PI(3,4,5)P3 binding site, which represents a rare CaM-binding motif and suggests a synergistic relationship between CaM and PI(3,4,5)P3 upon Akt activation. Elucidation of the mechanism by which Akt interacts with CaM will help in understanding the activation mechanism, which may provide insights for new potential targets to control the pathophysiological processes of cell survival.  相似文献   

9.
Phosphatidylinositol 3-kinase pathways play key regulatory roles in cell cycle progression into S phase. In this study, we demonstrated that Akt1/PKBα isoform plays an essential role in G1/S transition and proliferation. Cells lacking Akt1/PKBα showed an attenuated proliferation as well as G1/S transition, whereas cells lacking Akt2/PKBβ showed normal proliferation and G1/S transition. The effect of Akt1/PKBα on cell proliferation and G1/S transition was completely abolished by swapping pleckstrin homology (PH) domain with that of Akt2/PKBβ. Finally, full activation of Akt/PKB and cyclin D expression was achieved by the Akt1/PKBα or chimeric proteins containing the PH domain of Akt1/PKBα indicating that the PH domain of Akt1/PKBα provides full kinase activity and is necessary for the G1/S transition.  相似文献   

10.
The sphingolipid ceramide negatively regulates insulin action by inhibiting Akt/protein kinase B (PKB), a serine/threonine kinase that is a central regulator of glucose uptake and anabolic metabolism. Despite considerable attention, the molecular mechanism accounting for this action of ceramide has remained both elusive and controversial. Herein we utilized deletion constructs encoding two different functional domains of Akt/PKB to identify which region of the enzyme conferred responsiveness to ceramide. Surprisingly the findings obtained with these separate domains reveal that ceramide blocks insulin stimulation of Akt/PKB by two independent mechanisms. First, using the isolated pleckstrin homology domain, we found that ceramide specifically blocks the translocation of Akt/PKB, but not its upstream activator phosphoinositide-dependent kinase-1, to the plasma membrane. Second, using a construct lacking this pleckstrin homology domain, which does not require translocation for activation, we found that ceramide stimulates the dephosphorylation of Akt/PKB by protein phosphatase 2A. Collectively these findings identify at least two independent mechanisms by which excessive ceramide accumulation in peripheral tissues could contribute to the development of insulin resistance. Moreover the results obtained provide a unifying theory to account for the numerous dissenting reports investigating the actions of ceramide toward Akt/PKB.  相似文献   

11.
Gao T  Knecht D  Tang L  Hatton RD  Gomer RH 《Eukaryotic cell》2004,3(5):1176-1184
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of approximately 20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin- cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB.  相似文献   

12.
《Cellular signalling》2014,26(11):2460-2469
The small GTPase Rac1 plays a key role in insulin-promoted glucose uptake mediated by the GLUT4 glucose transporter in skeletal muscle. Our recent studies have demonstrated that the serine/threonine protein kinase Akt2 is critically involved in insulin-dependent Rac1 activation. The purpose of this study is to clarify the role of the guanine nucleotide exchange factor FLJ00068 in Akt2-mediated Rac1 activation and GLUT4 translocation in mouse skeletal muscle and cultured myocytes. Constitutively activated FLJ00068 induced GLUT4 translocation in a Rac1-dependent and Akt2-independent manner in L6 myocytes. On the other hand, knockdown of FLJ00068 significantly reduced constitutively activated Akt2-triggered GLUT4 translocation. Furthermore, Rac1 activation and GLUT4 translocation induced by constitutively activated phosphoinositide 3-kinase were inhibited by knockdown of FLJ00068. In mouse gastrocnemius muscle, constitutively activated FLJ00068 actually induced GLUT4 translocation to the sarcolemma. GLUT4 translocation by constitutively activated FLJ00068 was totally abolished in rac1 knockout mouse gastrocnemius muscle. Additionally, we were successful in detecting the activation of Rac1 following the expression of constitutively activated FLJ00068 in gastrocnemius muscle by immunofluorescence microscopy using an activation-specific probe. Collectively, these results strongly support the notion that FLJ00068 regulates Rac1 downstream of Akt2, leading to the stimulation of glucose uptake in skeletal muscle.  相似文献   

13.
Akt is a key mediator of cell proliferation, survival and metabolism. After translocation to the membrane and phosphorylation at T308 and S473, the activated Akt dissociates from the plasma membrane to cytoplasm, which is an important step to phosphorylate its downstream targets. In addition to its central role in regulating the kinase activity, phosphorylation of T308 in the kinase loop has been reported to be necessary for this dissociation process. However, it is not clear whether the membrane detachment requires further mechanisms. In the present report, we demonstrate that membrane dissociation of Akt requires phosphoinositide-dependent protein kinase 1 (PDK1) which directly phosphorylates not only T308 but also T34 in the pleckstrin homology (PH) domain. Like T308, T34 was phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate- and phosphatidylserine-dependent manner. Phosphorylation of T34 also occurred in cells following growth factor stimulation, concurrently with T308 phosphorylation. Moreover, when T34 was mutated to aspartic acid (T34D) to mimic its phosphorylation, Akt-membrane association assessed by surface plasmon resonance spectroscopy was significantly reduced. In cells, this mutation impaired the IGF-induced Akt membrane translocation and subsequent phosphorylation at T308 and S473. Taken together, our results demonstrate that T34 phosphorylation by PDK1 promotes the membrane dissociation of activated Akt for its downstream action through attenuating membrane binding affinity. This membrane dissociation mechanism offers a new insight for Akt activation process and provides a potential new target for controlling the Akt-dependent cellular processes.  相似文献   

14.
A wide variety of biological activities including the major metabolic actions of insulin is regulated by phosphatidylinositol (PI) 3-kinase. However, the downstream effectors of the various signaling pathways that emanate from PI 3-kinase remain unclear. Akt (protein kinase B), a serine-threonine kinase with a pleckstrin homology domain, is thought to be one such downstream effector. A mutant Akt (Akt-AA) in which the phosphorylation sites (Thr308 and Ser473) targeted by growth factors are replaced by alanine has now been shown to lack protein kinase activity and, when overexpressed in CHO cells or 3T3-L1 adipocytes with the use of an adenovirus vector, to inhibit insulin-induced activation of endogenous Akt. Akt-AA thus acts in a dominant negative manner in intact cells. Insulin-stimulated protein synthesis, which is sensitive to wortmannin, a pharmacological inhibitor of PI 3-kinase, was abolished by overexpression of Akt-AA without an effect on amino acid transport into the cells, suggesting that Akt is required for insulin-stimulated protein synthesis. Insulin activation of p70 S6 kinase was inhibited by ~75% in CHO cells and ~30% in 3T3-L1 adipocytes, whereas insulin-induced activation of endogenous Akt was inhibited by 80 to 95%, by expression of Akt-AA. Thus, Akt activity appears to be required, at least in part, for insulin stimulation of p70 S6 kinase. However, insulin-stimulated glucose uptake in both CHO cells and 3T3-L1 adipocytes was not affected by overexpression of Akt-AA, suggesting that Akt is not required for this effect of insulin. These data indicate that Akt acts as a downstream effector in some, but not all, of the signaling pathways downstream of PI 3-kinase.  相似文献   

15.
The cytoplasmic serine-threonine protein kinase coded for by the c-akt proto-oncogene features a protein kinase C-like catalytic domain and a unique NH2-terminal domain (AH domain). The AH domain is a member of a domain superfamily whose prototype was observed in pleckstrin (pleckstrin homology, or PH, domain). In this communication, we present evidence that the AH/PH domain is a domain of protein-protein interaction which mediates the formation of Akt protein complexes. The interaction between c-akt AH/PH domains is highly specific, as determined by the failure of this domain to bind AKT2. The AH/PH domain-mediated interactions depend on the integrity of the entire domain. Akt molecules with deletions of the NH2-terminal portion (amino acids 11 to 60) and AH/PH constructs with deletions of the C-terminal portion of this domain (amino acids 107 to 147) fail to interact with c-akt. To determine the significance of these findings, we carried out in vitro kinase assays using Akt immunoprecipitates from serum-starved and serum-starved, platelet-derived growth factor-stimulated NIH 3T3 cells. Addition of maltose-binding protein-AH/PH fusion recombinant protein, which is expected to bind Akt, to the immunoprecipitates from serum-starved cells induced the activation of the Akt kinase.  相似文献   

16.
17.
18.
Phosphatidylinositol (PI) 3-kinase is a cytoplasmic signaling molecule that is recruited to activated growth factor receptors after growth factor stimulation of cells. Activation of PI 3-kinase results in increased intracellular levels of 3' phosphorylated inositol phospholipids and the induction of signaling responses, including the activation of the protein kinase Akt, which is also known as RAC-PK or PKB. We tested the possibility that the phospholipid products of PI 3-kinase directly mediate the activation of Akt. We have previously described a constitutively active PI 3-kinase, p110, which can stimulate Akt activity. We used purified p110 protein to generate a series of 3' phosphorylated inositol phospholipids and tested whether any of these lipids could activate Akt in vitro. Phospholipid vesicles containing PI3,4 bisphosphate (P2) specifically activated Akt in vitro. By contrast, the presence of phospholipid vesicles containing PI3P or PI3,4,5P3 failed to increase the kinase activity of Akt. Akt could also be activated by synthetic dipalmitoylated PI3,4P2 or after enzymatic conversion of PI3,4,5P3 into PI3,4P2 with the signaling inositol polyphosphate 5' phosphatase SIP. We show that PI3,4P2-mediated activation is dependent on a functional pleckstrin homology domain in Akt, since a point mutation in the pleckstrin homology domain abrogated the response to PI3,4P2. Our findings show that a phospholipid product of PI 3-kinase can directly stimulate an enzyme known to be an important mediator of PI 3-kinase signaling.  相似文献   

19.
Akt plays a key role in the Ras/PI3K/Akt/mTOR signaling pathway. In breast cancer, Akt translocation to the plasma membrane is enabled by the interaction of its pleckstrin homology domain (PHD) with calmodulin (CaM). At the membrane, the conformational change promoted by PIP3 releases CaM and facilitates Thr308 and Ser473 phosphorylation and activation. Here, using modeling and molecular dynamics simulations, we aim to figure out how CaM interacts with Akt’s PHD at the atomic level. Our simulations show that CaM-PHD interaction is thermodynamically stable and involves a β-strand rather than an α-helix, in agreement with NMR data, and that electrostatic and hydrophobic interactions are critical. The PHD interacts with CaM lobes; however, multiple modes are possible. IP4, the polar head of PIP3, weakens the CaM-PHD interaction, implicating the release mechanism at the plasma membrane. Recently, we unraveled the mechanism of PI3Kα activation at the atomistic level and the structural basis for Ras role in the activation. Here, our atomistic structural data clarify the mechanism of how CaM interacts, delivers, and releases Akt—the next node in the Ras/PI3K pathway—at the plasma membrane.  相似文献   

20.
Members of the JNK pathway are organized together by virtue of interactions with JNK interacting protein 1 (JIP1), a scaffold protein. Here we have investigated the possibility that JIP1 may also affect the catalytic activity of Akt1, a serine/threonine kinase that has been implicated in multiple cellular processes, including survival and proliferation. JIP1 expression enhanced Akt1 kinase activity in a dose-dependent manner following serum starvation in 293 cells. Cellular activation of Akt1 following stimulation with low concentrations of insulin-like growth factor (IGF-1) was elevated in the presence of JIP1. JIP1 expression also prolonged Akt1 stimulation after a short IGF-1 pulse. The mechanism of JIP1-mediated Akt1 activation involved JIP1 protein binding to the Akt1 pleckstrin homology domain, which in turn promoted the phosphorylation of the activation T-loop of Akt1 by phosphoinositide-dependent kinase-1. These results suggest that, in certain cellular contexts, JIP1 may act as an Akt1 scaffold, which regulates the enzymatic activity of Akt1. This study also indicates that JIP1 expression can exert signaling effects independent of JNK activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号