共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Preeti Pathak Tiangang Li John Y. L. Chiang 《The Journal of biological chemistry》2013,288(52):37154-37165
Sterol 12α-hydroxylase (CYP8B1) is required for cholic acid synthesis and plays a critical role in intestinal cholesterol absorption and pathogenesis of cholesterol gallstone, dyslipidemia, and diabetes. In this study we investigated the underlying mechanism of fasting induction and circadian rhythm of CYP8B1 by a cholesterol-activated nuclear receptor and core clock gene retinoic acid-related orphan receptor α (RORα). Fasting stimulated, whereas restricted-feeding reduced expression of CYP8B1 mRNA and protein. However, fasting and feeding had little effect on the diurnal rhythm of RORα mRNA expression, but fasting increased RORα protein levels by cAMP-activated protein kinase A-mediated phosphorylation and stabilization of the protein. Adenovirus-mediated gene transduction of RORα to mice strongly induced CYP8B1 expression, and increased liver cholesterol and 12α-hydroxylated bile acids in the bile acid pool and serum. A reporter assay identified a functional RORα response element in the CYP8B1 promoter. RORα recruited cAMP response element-binding protein-binding protein (CBP) to stimulate histone acetylation on the CYP8B1 gene promoter. In conclusion, RORα is a key regulator of diurnal rhythm and fasting induction of CYP8B1, which regulates bile acid composition and serum and liver cholesterol levels. Antagonizing RORα activity may be a therapeutic strategy for treating inflammatory diseases such as non-alcoholic fatty liver disease and type 2 diabetes. 相似文献
4.
5.
Matthias Muenzner Neta Tuvia Claudia Deutschmann Nicole Witte Alexander Tolkachov Atijeh Valai Andrea Henze Leif E. Sander Jens Raila Michael Schupp 《Molecular and cellular biology》2013,33(20):4068-4082
Retinoids are vitamin A (retinol) derivatives and complex regulators of adipogenesis by activating specific nuclear receptors, including the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Circulating retinol-binding protein 4 (RBP4) and its membrane receptor STRA6 coordinate cellular retinol uptake. It is unknown whether retinol levels and the activity of RAR and RXR in adipocyte precursors are linked via RBP4/STRA6. Here, we show that STRA6 is expressed in precursor cells and, dictated by the apo- and holo-RBP4 isoforms, mediates bidirectional retinol transport that controls RARα activity and subsequent adipocyte differentiation. Mobilization of retinoid stores in mice by inducing RBP4 secretion from the liver activated RARα signaling in the precursor cell containing the stromal-vascular fraction of adipose tissue. Retinol-loaded holo-RBP4 blocked adipocyte differentiation of cultured precursors by activating RARα. Remarkably, retinol-free apo-RBP4 triggered retinol efflux that reduced cellular retinoids, RARα activity, and target gene expression and enhanced adipogenesis synergistically with ectopic STRA6. Thus, STRA6 in adipocyte precursor cells links nuclear RARα activity to the circulating RBP4 isoforms, whose ratio in obese mice was shifted toward limiting the adipogenic potential of their precursors. This novel cross talk identifies a retinol-dependent metabolic function of RBP4 that may have important implications for the treatment of obesity. 相似文献
6.
7.
8.
9.
10.
S. H. Priyanka S. Syam Das A. J. Thushara Arun A. Rauf M. Indira 《Neurochemical research》2018,43(9):1791-1801
Alcohol abuse affects several neurological pathways and causes significant alterations in the brain. Abstention from alcohol causes only a marginal decrease in oxidative stress and neuro inflammation. Our previous studies had shown that an active metabolite of vitamin A, all trans retinoic acid (ATRA), ameliorates alcohol induced toxicity. Hence in the present study we investigated whether ATRA regressed alcohol induced neuroinflammation. We focused on the role of silent mating type information regulation 2 homolog 1(SIRT1) and nuclear factor kappa-B (NFκB). Animals were administered with ethanol at a daily dose of (4 g/kg body weight) for 90 days. On the 91st day ethanol administration was stopped and animals were divided into ethanol abstention (A) and ATRA supplementation group (ATRA?+?A) (100 µg/kg body weight) and maintained for 30 days. Ethanol exposure increased markers of oxidative stress, inflammation and the activities of alcohol and acetaldehyde dehydrogenases and reduced the expression of SIRT1 in the whole brain.The ethanol induced altered expressions of NFκB and SIRT1 were modulated by supplementation of ATRA. Abstention also reduced toxicity, but to a lower extent in comparison with supplementation of ATRA. Our results seemed to suggest that ATRA regressed the mediators of ethanol induced neuroinflammation by reducing oxidative stress and by regulating the expression of NFκB and SIRT1. The ameliorative potential of ATRA was much higher than abstention. 相似文献
11.
12.
Tumor development, growth, and metastasis depend on the provision of an adequate vascular supply. This can be due to regulated angiogenesis, recruitment of circulating endothelial progenitors, and/or vascular transdifferentiation. Our previous studies showed that retinoic acid (RA) treatment converts a subset of breast cancer cells into cells with significant endothelial genotypic and phenotypic elements including marked induction of VE-cadherin, which was responsible for some but not all morphological changes. The present study demonstrates that of the endothelial-related genes induced by RA treatment, only a few were affected by knockdown of VE-cadherin, ruling it out as a regulator of the RA-induced endothelial genotypic switch. In contrast, knockdown of the RA-induced gene COUP-TFII prevented the formation of networks in Matrigel but had no effect on VE-cadherin induction or cell fusion. Two pan-kinase inhibitors markedly blocked RA-induced VE-cadherin expression and cell fusion. However, RA treatment resulted in a marked and broad reduction in tyrosine kinase activity. Several genes in the TGFβ signaling pathway were induced by RA, and specific inhibition of the TGFβ type I receptor blocked both RA-induced VE-cadherin expression and cell fusion. Together these data indicate a role for the TGFβ pathway and COUP-TFII in mediating the endothelial transdifferentiating properties of RA. 相似文献
13.
Qin Wang Lee-Yuan Liu-Chen John R. Traynor 《The Journal of biological chemistry》2009,284(27):18357-18367
Regulator of G-protein signaling (RGS) proteins are a family of molecules that control the duration of G protein signaling. A variety of RGS proteins have been reported to modulate opioid receptor signaling. Here we show that RGS4 is abundantly expressed in human neuroblastoma SH-SY5Y cells that endogenously express μ- and δ-opioid receptors and test the hypothesis that the activity of opioids in these cells is modulated by RGS4. Endogenous RGS4 protein was reduced by ∼90% in SH-SY5Y cells stably expressing short hairpin RNA specifically targeted to RGS4. In these cells, the potency and maximal effect of δ-opioid receptor agonist (SNC80)-mediated inhibition of forskolin-stimulated cAMP accumulation was increased compared with control cells. This effect was reversed by transient transfection of a stable RGS4 mutant (HA-RGS4C2S). Furthermore, MAPK activation by SNC80 was increased in cells with knockdown of RGS4. In contrast, there was no change in the μ-opioid (morphine) response at adenylyl cyclase or MAPK. FLAG-tagged opioid receptors and HA-RGS4C2S were transiently expressed in HEK293T cells, and co-immunoprecipitation experiments showed that the δ-opioid receptor but not the μ-opioid receptor could be precipitated together with the stable RGS4. Using chimeras of the δ- and μ-opioid receptors, the C-tail and third intracellular domain of the δ-opioid receptor were suggested to be the sites of interaction with RGS4. The findings demonstrate a role for endogenous RGS4 protein in modulating δ-opioid receptor signaling in SH-SY5Y cells and provide evidence for a receptor-specific effect of RGS4.μ- and δ-opioid receptors are members of the G protein-coupled receptor family and interact with Gαi/o proteins (1, 2). This results in signaling to a variety of downstream effectors, including adenylyl cyclase and the mitogen-activated protein kinase (MAPK)2 cascade. Signaling of opioid receptors is regulated negatively by regulator of G protein signaling (RGS) proteins (3, 4). These are a family of molecules containing a “RGS consensus” domain that bind to Gα subunits and act as GTPase-accelerating proteins to increase the rate of GTP hydrolysis. This results in a decrease in the lifetime of the active Gα-GTP and free Gβγ subunits and limits signaling to downstream effectors (5–8). The mechanisms by which RGS proteins selectively modulate G protein-mediated receptor signal transduction pathways, especially opioid receptor signaling, are beginning to unfold (9–12). The foundation for the function and selectivity of RGS proteins in regulating opioid signaling lies in their ability to interact with opioid receptors and their cognate G proteins. In general, the selectivity or the preference of an RGS protein for a particular receptor is determined by a variety of factors, including tissue-specific expression and precise interaction with the intracellular domains of receptor proteins, G protein subunits, and effectors as well as other pathway-specific components (13).The effects of RGS proteins on opioid receptor signaling have been examined in several systems. The findings are not always consistent, probably due to the different methodologies used. It has been shown that members of the RZ, R4, and R7 subfamilies (7) of RGS proteins play crucial roles not only in terminating acute opioid agonist action but also in opioid receptor desensitization, internalization, recycling, and degradation (3, 14), thereby affecting opioid tolerance and dependence (15–18). Much work has been performed with RGS4, because it is a smaller RGS protein with a structure consisting of the RGS consensus (box) sequence and a small N terminus (19, 20). It also has a wide distribution in the brain, especially in brain regions important for opioid actions, including the striatum, locus coeruleus, dorsal horn of the spinal cord, and cerebral cortex (21). In vitro RGS4 has been shown to reverse δ-opioid receptor agonist-induced inhibition of cAMP synthesis in membranes prepared from NG108-15 cells (6). Overexpression of RGS4 in HEK293 cells also attenuated morphine-, [d-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO)-, and [d-Pen2,d-Pen5]enkephalin (DPDPE)-induced inhibition of adenylyl cyclase (22, 23). Co-expression of RGS4 with GIRK1/GIRK2 channels in Xenopus oocytes reduced the basal K+ current and accelerated the deactivation of GIRK channels activated by κ-opioid receptor agonist ( U6959324). Although these previous studies have provided evidence that RGS4 can negatively regulate opioid receptor signaling, they do not confirm a functional role for endogenous RGS4 in endogenous, nontransfected systems.Human neuroblastoma SH-SY5Y cells endogenously express μ- and δ-opioid receptors and a variety of Gαi/o proteins (25–27). Here we show that RGS4 is abundantly found at both the mRNA and protein levels in these cells. Consequently, we used SH-SY5Y cells to examine the hypothesis that RGS4 negatively modulates opioid receptor signaling under physiological conditions. The endogenously expressed RGS4 level in SH-SY5Y cells was reduced using lentiviral delivery of short hairpin RNA (shRNA) targeting the RGS4 gene. This resulted in changes in δ- but not μ-opioid receptor-mediated signaling to adenylyl cyclase and the MAPK pathway. These findings argue for a selective interaction of RGS4 with the δ-opioid receptor. To test this, we expressed FLAG-tagged μ- and δ-opioid receptors together with a construct for a stable, proteosome-resistant RGS4 protein in HEK293T cells. Co-immunoprecipitation indicated that the δ-opioid but not the μ-opioid receptor was closely associated with RGS4, providing further evidence for a selective interaction between RGS4 and δ-opioid receptor signaling. 相似文献
14.
15.
Ting Wang Yatrik M. Shah Tsutomu Matsubara Yueying Zhen Tomotaka Tanabe Tomokazu Nagano Serge Fotso Kristopher W. Krausz T. Mark Zabriskie Jeffrey R. Idle Frank J. Gonzalez 《The Journal of biological chemistry》2010,285(10):7670-7685
A previous study identified the peroxisome proliferator-activated receptor α (PPARα) activation biomarkers 21-steroid carboxylic acids 11β-hydroxy-3,20-dioxopregn-4-en-21-oic acid (HDOPA) and 11β,20-dihydroxy-3-oxo-pregn-4-en-21-oic acid (DHOPA). In the present study, the molecular mechanism and the metabolic pathway of their production were determined. The PPARα-specific time-dependent increases in HDOPA and 20α-DHOPA paralleled the development of adrenal cortex hyperplasia, hypercortisolism, and spleen atrophy, which was attenuated in adrenalectomized mice. Wy-14,643 activation of PPARα induced hepatic FGF21, which caused increased neuropeptide Y and agouti-related protein mRNAs in the hypothalamus, stimulation of the agouti-related protein/neuropeptide Y neurons, and activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in increased adrenal cortex hyperplasia and corticosterone production, revealing a link between PPARα and the HPA axis in controlling energy homeostasis and immune regulation. Corticosterone was demonstrated as the precursor of 21-carboxylic acids both in vivo and in vitro. Under PPARα activation, the classic reductive metabolic pathway of corticosterone was suppressed, whereas an alternative oxidative pathway was uncovered that leads to the sequential oxidation on carbon 21 resulting in HDOPA. The latter was then reduced to the end product 20α-DHOPA. Hepatic cytochromes P450, aldehyde dehydrogenase (ALDH3A2), and 21-hydroxysteroid dehydrogenase (AKR1C18) were found to be involved in this pathway. Activation of PPARα resulted in the induction of Aldh3a2 and Akr1c18, both of which were confirmed as target genes through introduction of promoter luciferase reporter constructs into mouse livers in vivo. This study underscores the power of mass spectrometry-based metabolomics combined with genomic and physiologic analyses in identifying downstream metabolic biomarkers and the corresponding upstream molecular mechanisms. 相似文献
16.
17.
18.
19.