首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alteration of mitochondrial mass of human 143B osteosarcoma cells upon exposure to hydrogen peroxide (H2O2) was investigated. We found that mitochondrial mass and the intracellular level of H2O2 were increased by exogenous H2O2, which was accompanied with up-regulation of functional PKCδ. To investigate the role of PKCδ in H2O2-induced increase of mitochondrial mass, we treated 143B cells with PKCδ activator, bistratene A, and PKCδ inhibitor, rottlerin, respectively. The results show that bistratene A caused an increase of mitochondrial mass and that the H2O2-induced increase of mitochondrial mass was completely suppressed by rottlerin. Furthermore, we found that activation of PKCδ by bistratene A increased the intracellular levels of H2O2 and MnSOD protein expression. By contrast, suppression of PKCδ by rottlerin decreased the intracellular levels of H2O2 and MnSOD protein expression. Moreover, we noted that MnSOD expression was highly correlated with the expression of p53, which was controlled by PKCδ. Finally, we demonstrated that PKCδ was overexpressed in skin fibroblasts of patients with MERRF syndrome. Taken together, we conclude that PKCδ is involved in the regulation of mitochondrial mass and intracellular H2O2 in human cells and may play a key role in the overproliferation of mitochondria in the affected tissues of patients with mitochondrial diseases such as MERRF syndrome.  相似文献   

2.
The cellular response to oxidative stress includes the release of mitochondrial cytochrome c and the induction of apoptosis. Here we show that treatment of diverse cells with hydrogen peroxide (H2O2) induces the targeting of protein kinase C delta (PKCdelta) to mitochondria. The results demonstrate that H2O2-induced activation of PKCdelta is necessary for translocation of PKCdelta from the cytoplasm to the mitochondria. The results also show that mitochondrial targeting of PKCdelta is associated with the loss of mitochondrial transmembrane potential and release of cytochrome c. The functional importance of this event is also supported by the demonstration that H2O2-induced apoptosis is blocked by the inhibition of PKCdelta activation and translocation to mitochondria. These findings indicate that mitochondrial targeting of PKCdelta is required, at least in part, for the apoptotic response of cells to oxidative stress.  相似文献   

3.
Protein kinase C (PKC) isoforms are phosphorylated on tyrosine in the response of cells to oxidative stress. The present studies demonstrate that treatment of cells with hydrogen peroxide (H(2)O(2)) induces binding of the PKCdelta isoform and the c-Abl protein-tyrosine kinase. The results show that c-Abl phosphorylates PKCdelta in the H(2)O(2) response. We also show that PKCdelta phosphorylates and activates c-Abl in vitro. In cells, induction of c-Abl activity by H(2)O(2) is attenuated by the PKCdelta inhibitor, rottlerin, and by overexpression of the regulatory domain of PKCdelta. These findings support a functional interaction between PKCdelta and c-Abl in the cellular response to oxidative stress.  相似文献   

4.
ANG II promotes remodeling of vascular smooth muscle cells (VSMCs) in cardiovascular diseases. It has been shown to activate p21-activated kinase (PAK)1, a critical component of signaling pathways implicated in growth and migration. However, the detailed signaling mechanism by which ANG II induces PAK1 activation in VSMCs remains unclear. Therefore, we have examined the mechanism required for activation of PAK1 by ANG II in VSMCs. ANG II, through activation of the ANG II type 1 receptor, rapidly promotes phosphorylation of PAK1 in VSMCs via a pathway independent of transactivation of the epidermal growth factor receptor. Using selective agonists and inhibitors, we demonstrated that mobilization of intracellular Ca2+ and PKC activation are required for ANG II-induced PAK1 phosphorylation. Rottlerin, a PKC inhibitor, significantly blocked ANG II-induced PAK1 phosphorylation. Further support for this notion was provided through infection of VSMCs with adenovirus encoding a dominant-negative (dn)PKC, which also markedly reduced phosphorylation of PAK1 by ANG II. In this pathway, Ca2+ acts upstream of PKC because a Ca2+ ionophore rapidly induced PKC phosphorylation at Tyr311 and Ca2+-dependent PAK1 phosphorylation was blocked by rottlerin. In addition, dnPYK-2, dnRac, and antioxidants inhibited ANG II-induced PAK1 phosphorylation, suggesting that PYK-2, Rac, and reactive oxygen species are involved in the upstream signaling. Finally, dnPAK1 markedly inhibited ANG II-induced protein synthesis in VSMCs. These data provide a novel signaling pathway by which ANG II may contribute to vascular remodeling. vascular remodeling; signal transduction  相似文献   

5.
Conventional and novel protein kinase C (PKC) isozymes transduce the abundance of signals mediated by phospholipid hydrolysis; however redundancy in regulatory mechanisms confounds dissecting the unique signaling properties of each of the eight isozymes constituting these two subgroups. Previously, we created a genetically encoded reporter (C kinase activity reporter (CKAR)) to visualize the rate, amplitude, and duration of agonist-evoked PKC signaling at specific locations within the cell. Here we designed a reporter, δCKAR, that specifically measures the activation signature of one PKC isozyme, PKC δ, in cells, revealing unique spatial and regulatory properties of this isozyme. Specifically, we show two mechanisms of activation: 1) agonist-stimulated activation at the plasma membrane (the site of most robust PKC δ signaling), Golgi, and mitochondria that is independent of Src and can be triggered by phorbol esters and 2) agonist-stimulated activation in the nucleus that requires Src kinase activation and cannot be triggered by phorbol esters. Translocation studies reveal that the G-protein-coupled receptor agonist UTP induces the translocation of PKC δ into the nucleus by a mechanism that depends on the C2 domain and requires Src kinase activity. However, translocation from the cytosol into the nucleus is not required for the Src-dependent regulation of nuclear activity; a construct of PKC δ prelocalized to the nucleus continues to be activated by UTP by a mechanism dependent on Src kinase activity. These data identify the nucleus as a signaling hub for PKC δ that is driven by receptor-mediated signaling pathways (but not phorbol esters) and differs from signaling at plasma membrane and Golgi in that it is controlled by Src family kinases.  相似文献   

6.
7.
8.
Syndecans are proteoglycans that act as signaling molecules. Previously, we showed that syndecan-2 (SYND2) is involved in the control of osteoblastic (OB) cell apoptosis. Here, we show a novel functional interaction between SYND2 and protein kinase C delta (PKCdelta). Overexpression of SYND2 in MG63 OB cells resulted in increased PKCdelta protein level without change in PKCdelta mRNA production. In SYND2-transfected cells, the increase in PKCdelta was restricted to the cytosolic compartment, threonine 505-PKCdelta was underphosphorylated and immunoprecipitated PKCdelta showed decreased capacity to phosphorylate histone, indicating that SYND2 decreased PKCdelta activity. Inhibition of PKCdelta by Rottlerin or a dead-kinase dominant negative (DN) construct activated effector caspases and increased the number of apoptotic cells. In addition, rescue of kinase activity with a construct coding, the PKCdelta catalytic domain (CAT) reduced SYND2-induced apoptosis. This indicates that PKCdelta acts as a pro-survival kinase and that SYND2 inhibits the anti-apoptotic action of PKCdelta in OB cells. We also showed that overexpression of PKCdelta wild type (WT) induced osteoblast apoptosis. Moreover, inhibition of PKCdelta by siRNA resulted in increased apoptosis in control cells but reduced apoptosis in SYND2-overexpressing osteoblasts, indicating that SYND2 requires PKCdelta accumulation to induce apoptosis. These results show that SYND2 modulates PKCdelta actions by inhibition of the canonical allosterical activation pathway that plays an anti-apoptotic role in OB cells, and promotion of a pro-apoptotic role that may depend on PKCdelta protein level and that participates to the induction of cell death by SYND2. This establishes a functional interaction between SYND2 and PKCdelta in osteoblasts.  相似文献   

9.
Mitochondria contribute significantly to the cellular production of ROS. The deleterious effects of increased ROS levels have been implicated in a wide variety of pathological reactions. Apart from a direct detoxification of ROS molecules, protein quality control mechanisms are thought to protect protein functions in the presence of elevated ROS levels. The reactivities of molecular chaperones and proteases remove damaged polypeptides, maintaining enzyme activities, thereby contributing to cellular survival both under normal and stress conditions. We characterized the impact of oxidative stress on mitochondrial protein homeostasis by performing a proteomic analysis of isolated yeast mitochondria, determining the changes in protein abundance after ROS treatments. We identified a set of mitochondrial proteins as substrates of ROS‐dependent proteolysis. Enzymes containing oxidation‐sensitive prosthetic groups like iron/sulfur clusters represented major targets of stress‐dependent degradation. We found that several proteins involved in ROS detoxification were also affected. We identified the ATP‐dependent protease Pim1/LON as a major factor in the degradation of ROS‐modified soluble polypeptides localized in the matrix compartment. As Pim1/LON expression was induced significantly under ROS treatment, we propose that this protease system performs a crucial protective function under oxidative stress conditions.  相似文献   

10.
Up to 2% of the oxygen consumed by the mitochondrial respiratory chain undergoes one electron reduction, typically by the semiquinone form of coenzyme Q, to generate the superoxide radical, and subsequently other reactive oxygen species such as hydrogen peroxide and the hydroxyl radical. Under conditions in which mitochondrial generation of reactive oxygen species is increased (such as in the presence of Ca2+ ions or when the mitochondrial antioxidant defense mechanisms are compromised), these reactive oxygen species may lead to irreversible damage of mitochondrial DNA, membrane lipids and proteins, resulting in mitochondrial dysfunction and ultimately cell death. The nature of this damage and the cellular conditions in which it occurs are discussed in this review article.  相似文献   

11.
The stress-activated kinase JNK mediates key cellular responses to oxidative stress. Here we show that DAP kinase (DAPk), a cell death promoting Ser/Thr protein kinase, plays a main role in oxidative stress-induced JNK signaling. We identify protein kinase D (PKD) as a novel substrate of DAPk and demonstrate that DAPk physically interacts with PKD in response to oxidative stress. We further show that DAPk activates PKD in cells and that induction of JNK phosphorylation by ectopically expressed DAPk can be attenuated by knocking down PKD expression or by inhibiting its catalytic activity. Moreover, knockdown of DAPk expression caused a marked reduction in JNK activation under oxidative stress, indicating that DAPk is indispensable for the activation of JNK signaling under these conditions. Finally, DAPk is shown to be required for cell death under oxidative stress in a process that displays the characteristics of caspase-independent necrotic cell death. Taken together, these findings establish a major role for DAPk and its specific interaction with PKD in regulating the JNK signaling network under oxidative stress.  相似文献   

12.
13.
BackgroundExcess copper (Cu) is an oxidative stress factor which associates with a variety of diseases. The aim of this study was to evaluate the effect of Cu in primary chicken embryo hepatocytes (CEHs).MethodsCEHs were isolated from 13 days old chicken embryos and followed by different concentration Cu (0, 10, 100, 200 μM) and/or ALC treatment (0.3 mg/mL) for 12 or 24 h. The effects of Cu exposure in CEHs were determined by detecting reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP), and ATP levels. The expression of mitochondrial dynamics-related genes and proteins were also detected.ResultsResults showed that Cu treatment (100 or 200 μM) significantly decreased CEHs viability, MMP and ATP levels, increased ROS and MDA levels in 12 or 24 h. The up-regulated mitochondrial fission genes and protein in 100 and 200 μM Cu groups suggested Cu promoted mitochondrial division but not fusion. However, the co-treatment of ALC and Cu alleviated those changes compared with the 100 or 200 μM Cu groups.ConclusionIn conclusion, we speculated that Cu increased the oxidative stress and induced mitochondria dysfunction via disturbing mitochondrial dynamic balance in CEHs, and this process was not completely reversible.  相似文献   

14.
15.
16.
Mitochondrial protein phosphorylation is a well-recognized metabolic control mechanism, with the classical example of pyruvate dehydrogenase (PDH) regulation by specific kinases and phosphatases of bacterial origin. However, despite the growing number of reported mitochondrial phosphoproteins, the identity of the protein kinases mediating these phosphorylation events remains largely unknown. The detection of mitochondrial protein kinases is complicated by the low concentration of kinase relative to that of the target protein, the lack of specific antibodies, and contamination from associated, but nonmatrix, proteins. In this study, we use blue native gel electrophoresis (BN-PAGE) to isolate rat and porcine heart mitochondrial complexes for screening of protein kinase activity. To detect kinase activity, one-dimensional BN-PAGE gels were exposed to [γ-(32)P]ATP and then followed by sodium dodecyl sulfate gel electrophoresis. Dozens of mitochondrial proteins were labeled with (32)P in this setting, including all five complexes of oxidative phosphorylation and several citric acid cycle enzymes. The nearly ubiquitous (32)P protein labeling demonstrates protein kinase activity within each mitochondrial protein complex. The validity of this two-dimensional BN-PAGE method was demonstrated by detecting the known PDH kinases and phosphatases within the PDH complex band using Western blots and mass spectrometry. Surprisingly, these same approaches detected only a few additional conventional protein kinases, suggesting a major role for autophosphorylation in mitochondrial proteins. Studies on purified Complex V and creatine kinase confirmed that these proteins undergo autophosphorylation and, to a lesser degree, tenacious (32)P-metabolite association. In-gel Complex IV activity was shown to be inhibited by ATP, and partially reversed by phosphatase activity, consistent with an inhibitory role for protein phosphorylation in this complex. Collectively, this study proposes that many of the mitochondrial complexes contain an autophosphorylation mechanism, which may play a functional role in the regulation of these multiprotein units.  相似文献   

17.
18.
Vitamin C prevents DNA mutation induced by oxidative stress   总被引:10,自引:0,他引:10  
The precise role of vitamin C in the prevention of DNA mutations is controversial. Although ascorbic acid has strong antioxidant properties, it also has pro-oxidant effects in the presence of free transition metals. Vitamin C was recently reported to induce the decomposition of lipid hydroperoxides independent of metal interactions, suggesting that it may cause DNA damage. To directly address the role of vitamin C in maintaining genomic integrity we developed a genetic system for quantifying guanine base mutations induced in human cells under oxidative stress. The assay utilized a plasmid construct encoding the cDNA for chloramphenicol acetyl transferase modified to contain an amber stop codon, which was restored to wild type by G to T transversion induced by oxidative stress. The mutation frequency was determined from the number of plasmids containing the wild type chloramphenicol acetyl transferase gene rescued from oxidatively stressed cells. Cells were loaded with vitamin C by exposing them to dehydroascorbic acid, thereby avoiding transition metal-related pro-oxidant effects of ascorbic acid. We found that vitamin C loading resulted in substantially decreased mutations induced by H(2)O(2). Depletion of glutathione led to cytotoxicity and an increase in H(2)O(2)-induced mutation frequency; however, mutation frequency was prominently decreased in depleted cells preloaded with vitamin C. The mutation results correlated with a decrease in total 8-oxo-guanine measured in genomic DNA of cells loaded with vitamin C and oxidatively stressed. These findings directly support the concept that high intracellular concentrations of vitamin C can prevent oxidation-induced mutations in human cells.  相似文献   

19.
It was shown that sodium humate decreased the level of the dioxidin-induced clastogenic effects in the range of concentrations of 50 to 1000 mg/l; dioxidin, a mutagen with prooxidant properties, was used at the concentration of 20 mg/l. The maximum effect was observed at the concentration of 300 mg/l. No direct dose-response dependence under the effect of sodium humate was found. The feasible antioxidant and desmutagenic mechanisms of a protective effect of sodium humate are discussed.  相似文献   

20.

Background

TDP-43 proteinopathies are characterized by loss of nuclear TDP-43 expression and formation of C-terminal TDP-43 fragmentation and accumulation in the cytoplasm. Recent studies have shown that TDP-43 can accumulate in RNA stress granules (SGs) in response to cell stresses and this could be associated with subsequent formation of TDP-43 ubiquinated protein aggregates. However, the initial mechanisms controlling endogenous TDP-43 accumulation in SGs during chronic disease are not understood. In this study we investigated the mechanism of TDP-43 processing and accumulation in SGs in SH-SY5Y neuronal-like cells exposed to chronic oxidative stress. Cell cultures were treated overnight with the mitochondrial inhibitor paraquat and examined for TDP-43 and SG processing.

Results

We found that mild stress induced by paraquat led to formation of TDP-43 and HuR-positive SGs, a proportion of which were ubiquitinated. The co-localization of TDP-43 with SGs could be fully prevented by inhibition of c-Jun N-terminal kinase (JNK). JNK inhibition did not prevent formation of HuR-positive SGs and did not prevent diffuse TDP-43 accumulation in the cytosol. In contrast, ERK or p38 inhibition prevented formation of both TDP-43 and HuR-positive SGs. JNK inhibition also inhibited TDP-43 SG localization in cells acutely treated with sodium arsenite and reduced the number of aggregates per cell in cultures transfected with C-terminal TDP-43 162-414 and 219-414 constructs.

Conclusions

Our studies are the first to demonstrate a critical role for kinase control of TDP-43 accumulation in SGs and may have important implications for development of treatments for FTD and ALS, targeting cell signal pathway control of TDP-43 aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号