首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun H  Wu Y  Qi J  Pan Y  Ge G  Chen J 《The Journal of biological chemistry》2011,286(14):12086-12092
Lymphocyte homing is regulated by the dynamic interaction between integrins and their ligands. Integrin α4β7 mediates both rolling and firm adhesion of lymphocytes by modulating its affinity to the ligand, mucosal addressin cell adhesion molecule-1 (MAdCAM-1). Although previous studies have revealed some mechanisms of α4β7-MAdCAM-1 binding, little is known about the different molecular bases of the low- and high-affinity α4β7-MAdCAM-1 interactions, which mediate rolling and firm adhesion of lymphocytes, respectively. Here, we found that two loops in immunoglobulin domains 1 and 2 (D1 and D2) of MAdCAM-1 played different roles in MAdCAM-1 binding to low-affinity (inactive) and high-affinity (activated) α4β7. The Asp-42 in the CC' loop of D1 was indispensable for MAdCAM-1 binding to both low-affinity and high-affinity α4β7. The other CC' loop residues except for Arg-39 and Ser-44 were essential for MAdCAM-1 binding to both inactive α4β7 and α4β7 activated by SDF-1α or talin, but not required for MAdCAM-1 binding to Mn2+-activated α4β7. Single amino acid substitution of the DE loop residues mildly decreased MAdCAM-1 binding to both inactive and activated α4β7. Notably, removal of the DE loop greatly impaired MAdCAM-1 binding to inactive and SDF-1α- or talin-activated α4β7, but only decreased 60% of MAdCAM-1 binding to Mn2+-activated α4β7. Moreover, DE loop residues were important for stabilizing the low-affinity α4β7-MAdCAM-1 interaction. Thus, our findings demonstrate the distinct roles of the CC' and DE loops in the recognition of MAdCAM-1 by low- and high-affinity α4β7 and suggest that the inactive α4β7 and α4β7 activated by different stimuli have distinct conformations with different structural requirements for MAdCAM-1 binding.  相似文献   

2.
Adherens junction (AJ) is a specialized cell-cell junction structure that plays a role in mechanically connecting adjacent cells to resist strong contractile forces and to maintain tissue structure, particularly in the epithelium. AJ is mainly comprised of cell adhesion molecules cadherin and nectin and their associating cytoplasmic proteins including β-catenin, α-catenin, p120ctn, and afadin. Our series of studies have revealed that nectin first forms cell-cell adhesion and then recruits cadherin to form AJ. The recruitment of cadherin by nectin is mediated by the binding of α-catenin and p120ctn to afadin. Recent studies showed that PLEKHA7 binds to p120ctn, which is associated with E-cadherin, and maintains the integrity of AJ in epithelial cells. In this study, we showed that PLEKHA7 bound to afadin in addition to p120ctn and was recruited to the nectin-3α-based cell-cell adhesion site in a manner dependent on afadin, but not on p120ctn. The binding of PLEKHA7 to afadin was required for the proper formation of AJ, but not for the formation of tight junction, in EpH4 mouse mammary gland epithelial cells. These results indicate that PLEKHA7 plays a cooperative role with nectin and afadin in the proper formation of AJ in epithelial cells.  相似文献   

3.
The Hermansky-Pudlak syndrome (HPS) is a genetic hypopigmentation and bleeding disorder caused by defective biogenesis of lysosome-related organelles (LROs) such as melanosomes and platelet dense bodies. HPS arises from mutations in any of 8 genes in humans and 16 genes in mice. Two of these genes, HPS1 and HPS4, encode components of the biogenesis of lysosome-related organelles complex-3 (BLOC-3). Herein we show that recombinant HPS1-HPS4 produced in insect cells can be efficiently isolated as a 1:1 heterodimer. Analytical ultracentrifugation reveals that this complex has a molecular mass of 146 kDa, equivalent to that of the native complex and to the sum of the predicted molecular masses of HPS1 and HPS4. This indicates that HPS1 and HPS4 interact directly in the absence of any other protein as part of BLOC-3. Limited proteolysis and deletion analyses show that both subunits interact with one another throughout most of their lengths with the sole exception of a long, unstructured loop in the central part of HPS4. An interaction screen reveals a specific and strong interaction of BLOC-3 with the GTP-bound form of the endosomal GTPase, Rab9. This interaction is mediated by HPS4 and the switch I and II regions of Rab9. These characteristics indicate that BLOC-3 might function as a Rab9 effector in the biogenesis of LROs.  相似文献   

4.
Matrilin-1 is expressed predominantly in cartilage and co-localizes with matrilin-3 with which it can form hetero-oligomers. We recently described novel structural and functional features of the matrilin-3 A-domain (M3A) and demonstrated that it bound with high affinity to type II and IX collagens. Interactions preferentially occurred in the presence of Zn2+ suggesting that matrilin-3 has acquired a requirement for specific metal ions for activation and/or molecular associations. To understand the interdependence of matrilin-1/-3 hetero-oligomers in extracellular matrix (ECM) interactions, we have extended these studies to include the two matrilin-1 A-domains (i.e. M1A1 and M1A2 respectively). In this study we have identified new characteristics of the matrilin-1 A-domains by describing their glycosylation state and the effect of N-glycan chains on their structure, thermal stability, and protein-protein interactions. Initial characterization revealed that N-glycosylation did not affect secretion of these two proteins, nor did it alter their folding characteristics. However, removal of the glycosylation decreased their thermal stability. We then compared the effect of different cations on binding between both M1A domains and type II and IX collagens and showed that Zn2+ also supports their interactions. Finally, we have demonstrated that both M1A1 domains and biglycan are essential for the association of the type II·VI collagen complex. We predict that a potential role of the matrilin-1/-3 hetero-oligomer might be to increase multivalency, and therefore the ability to connect various ECM components. Differing affinities could act to regulate the integrated network, thus coordinating the organization of the macromolecular structures in the cartilage ECM.  相似文献   

5.
Na+/H+ exchanger 3 (NHE3) plays an important role in neutral Na+ transport in mammalian epithelial cells. The Rho family of small GTPases and the PDZ (PSD-95/discs large/ZO-1) domain-based adaptor Shank2 are known to regulate the membrane expression and activity of NHE3. In this study we examined the role of βPix, a guanine nucleotide exchange factor for the Rho GTPase and a strong binding partner to Shank2, in NHE3 regulation using integrated molecular and physiological approaches. Immunoprecipitation and pulldown assays revealed that NHE3, Shank2, and βPix form a macromolecular complex when expressed heterologously in mammalian cells as well as endogenously in rat colon, kidney, and pancreas. In addition, these proteins co-segregated at the apical surface of rat colonic epithelial cells, as detected by immunofluorescence staining. When expressed in PS120/NHE3 cells, βPix increased membrane expression and basal activity of NHE3. Interestingly, the effects of βPix on NHE3 were abolished by cotransfection with dominant-negative Shank2 mutants and by treatment with Clostridium difficile toxin B, a Rho GTPase inhibitor, indicating that Shank2 and Rho GTPases are involved in βPix-mediated NHE3 regulation. Knockdown of endogenous βPix by RNA interference decreased Shank2-induced increase of NHE3 membrane expression in HEK 293T cells. These results indicate that βPix up-regulates NHE3 membrane expression and activity by Shank2-mediated protein-protein interaction and by activating Rho GTPases in the apical regions of epithelial cells.  相似文献   

6.
Molecular basis of Wnt activation via the DIX domain protein Ccd1   总被引:1,自引:0,他引:1  
The Wnt signaling plays pivotal roles in embryogenesis and cancer, and the three DIX domain-containing proteins, Dvl, Axin, and Ccd1, play distinct roles in the initiation and regulation of canonical Wnt signaling. Overexpressed Dvl has a tendency to form large polymers in a cytoplasmic punctate pattern, whereas the biologically active Dvl in fact forms low molecular weight oligomers. The molecular basis for how the polymeric sizes of Dvl proteins are controlled upon Wnt signaling remains unclear. Here we show that Ccd1 up-regulates canonical Wnt signaling via acting synergistically with Dvl. We determined the crystal structures of wild type Ccd1-DIX and mutant Dvl1-DIX(Y17D), which pack into "head-to-tail" helical filaments. Structural analyses reveal two sites crucial for intra-filament homo- and hetero-interaction and a third site for inter-filament homo-assembly. Systematic mutagenesis studies identified critical residues from all three sites required for Dvl homo-oligomerization, puncta formation, and stimulation of Wnt signaling. Remarkably, Ccd1 forms a hetero-complex with Dvl through the "head" of Dvl-DIX and the "tail" of Ccd1-DIX, depolymerizes Dvl homo-assembly, and thereby controls the size of Dvl polymer. These data together suggest a molecular mechanism for Ccd1-mediated Wnt activation in that Ccd1 converts latent polymeric Dvl to a biologically active oligomer(s).  相似文献   

7.
The fusion of mammalian cells into syncytia is a developmental process that is tightly restricted to a limited subset of cells. Besides gamete and placental trophoblast fusion, only macrophages and myogenic stem cells fuse into multinucleated syncytia. In contrast to viral cell fusion, which is mediated by fusogenic glycoproteins that actively merge membranes, mammalian cell fusion is poorly understood at the molecular level. A variety of mammalian transmembrane proteins, among them many of the immunoglobulin superfamily, have been implicated in cell-cell fusion, but none has been shown to actively fuse cells in vitro. Here we report that the FGFRL1 receptor, which is up-regulated during the differentiation of myoblasts into myotubes, fuses cultured cells into large, multinucleated syncytia. We used luciferase and GFP-based reporter assays to confirm cytoplasmic mixing and to identify the fusion inducing domain of FGFRL1. These assays revealed that Ig-like domain III and the transmembrane domain are both necessary and sufficient to rapidly fuse CHO cells into multinucleated syncytia comprising several hundred nuclei. Moreover, FGFRL1 also fused HEK293 and HeLa cells with untransfected CHO cells. Our data show that FGFRL1 is the first mammalian protein that is capable of inducing syncytium formation of heterologous cells in vitro.  相似文献   

8.
Primary microcephaly is an autosomal recessive disorder characterized by marked reduction in human brain size. Microcephalin (MCPH1), one of the genes mutated in primary microcephaly, plays an important role in DNA damage checkpoint control and mitotic entry. Additionally, MCPH1 ensures the proper temporal activation of chromosome condensation during mitosis, by acting as a negative regulator of the condensin II complex. We previously found that deletion of the of the MCPH1 N terminus leads to the premature chromosome condensation (PCC) phenotype. In the present study, we unexpectedly observed that a truncated form of MCPH1 appears to be expressed in MCPH1(S25X/S25X) patient cells. This likely results from utilization of an alternative translational start codon, which would produce a mutant MCPH1 protein with a small deletion of its N-terminal BRCT domain. Furthermore, missense mutations in the MCPH1 cluster at its N terminus, suggesting that intact function of this BRCT protein-interaction domain is required both for coordinating chromosome condensation and human brain development. Subsequently, we identified the SET nuclear oncogene as a direct binding partner of the MCPH1 N-terminal BRCT domain. Cells with SET knockdown exhibited abnormal condensed chromosomes similar to those observed in MCPH1-deficient mouse embryonic fibroblasts. Condensin II knockdown rescued the abnormal chromosome condensation phenotype in SET-depleted cells. In addition, MCPH1 V50G/I51V missense mutations, impair binding to SET and fail to fully rescue the abnormal chromosome condensation phenotype in Mcph1(-/-) mouse embryonic fibroblasts. Collectively, our findings suggest that SET is an important regulator of chromosome condensation/decondensation and that disruption of the MCPH1-SET interaction might be important for the pathogenesis of primary microcephaly.  相似文献   

9.
Rac1 is a member of the Rho family of small GTPases, which regulate cell adhesion and migration through their control of the actin cytoskeleton. Rho-GTPases are structurally very similar, with the exception of a hypervariable domain in the C terminus. Using peptide-based pulldown assays in combination with mass spectrometry, we previously showed that the hypervariable domain in Rac1 mediates specific protein-protein interactions. Most recently, we found that the Rac1 C terminus associates to the ubiquitously expressed adapter protein CMS/CD2AP. CD2AP is critical for the formation and maintenance of a specialized cell-cell contact between kidney podocyte foot processes, the slit diaphragm. Here, CD2AP links the cell adhesion protein nephrin to the actin cytoskeleton. In addition, CMS/CD2AP binds actin-regulating proteins, such as CAPZ and cortactin, and has been implicated in the internalization of growth factor receptors. We found that CD2AP specifically interacts with the C-terminal domain of Rac1 but not with that of other Rho family members. Efficient interaction between Rac1 and CD2AP requires both the proline-rich domain and the poly-basic region in the Rac1 C terminus, and at least two of the three N-terminal SH3 domains of CD2AP. CD2AP co-localizes with Rac1 to membrane ruffles, and small interfering RNA-based experiments showed that CD2AP links Rac1 to CAPZ and cortactin. Finally, expression of constitutive active Rac1 recruits CD2AP to cell-cell contacts in epithelial cells, where we found CD2AP to participate in the control of the epithelial barrier function. These data identify CD2AP as a novel Rac1-associated adapter protein that participates in the regulation of epithelial cell-cell contact.  相似文献   

10.
In multicellular organisms, cells are interconnected by cell adhesion molecules. Nectins are immunoglobulin (Ig)-like cell adhesion molecules that mediate homotypic and heterotypic cell-cell adhesion, playing key roles in tissue organization. To mediate cell-cell adhesion, nectin molecules dimerize in cis on the surface of the same cell, followed by trans-dimerization of the cis-dimers between the neighboring cells. Previous cell biological studies deduced that the first Ig-like domain of nectin and the second Ig-like domain are involved in trans-dimerization and cis-dimerization, respectively. However, to understand better the steps involved in nectin adhesion, the structural basis for the dimerization of nectin must be determined. In this study, we determined the first crystal structure of the entire extracellular region of nectin-1. In the crystal, nectin-1 formed a V-shaped homophilic dimer through the first Ig-like domain. Structure-based site-directed mutagenesis of the first Ig-like domain identified four essential residues that are involved in the homophilic dimerization. Upon mutating the four residues, nectin-1 significantly decreased cis-dimerization on the surface of cultured cells and abolished the homophilic and heterophilic adhesion activities. These results indicate that, in contrast with the previous notion, our structure represents a cis-dimer. Thus, our findings clearly reveal the structural basis for the cis-dimerization of nectins through the first Ig-like domains.  相似文献   

11.
To develop a novel attenuation strategy applicable to all influenza A viruses, we targeted the highly conserved protein-protein interaction of the viral polymerase subunits PA and PB1. We postulated that impaired binding between PA and PB1 would negatively affect trimeric polymerase complex formation, leading to reduced viral replication efficiency in vivo. As proof of concept, we introduced single or multiple amino acid substitutions into the protein-protein-binding domains of either PB1 or PA, or both, to decrease binding affinity and polymerase activity substantially. As expected, upon generation of recombinant influenza A viruses (SC35M strain) containing these mutations, many pseudo-revertants appeared that partially restored PA-PB1 binding and polymerase activity. These polymerase assembly mutants displayed drastic attenuation in cell culture and mice. The attenuation of the polymerase assembly mutants was maintained in IFNα/β receptor knock-out mice. As exemplified using a H5N1 polymerase assembly mutant, this attenuation strategy can be also applied to other highly pathogenic influenza A virus strains. Thus, we provide proof of principle that targeted mutation of the highly conserved interaction domains of PA and PB1 represents a novel strategy to attenuate influenza A viruses.  相似文献   

12.
Ribosome formation in Saccharomyces cerevisiae requires a large number of transiently associated assembly factors that coordinate processing and folding of pre-rRNA and binding of ribosomal proteins. Krr1 and Faf1 are two interacting proteins present in early 90 S precursor particles of the small ribosomal subunit. Here, we determined a co-crystal structure of the core domain of Krr1 bound to a 19-residue fragment of Faf1 at 2.8 Å resolution. The structure reveals that Krr1 consists of two packed K homology (KH) domains, KH1 and KH2, and resembles archaeal Dim2-like proteins. We show that KH1 is a divergent KH domain that lacks the RNA-binding GXXG motif and is involved in binding another assembly factor, Kri1. KH2 contains a canonical RNA-binding surface and additionally associates with an α-helix of Faf1. Specific disruption of the Krr1-Faf1 interaction impaired early 18 S rRNA processing at sites A0, A1, and A2 and caused cell lethality, but it did not prevent incorporation of the two proteins into pre-ribosomes. The Krr1-Faf1 interaction likely maintains a critical conformation of 90 S pre-ribosomes required for pre-rRNA processing. Our results illustrate the versatility of KH domains in protein interaction and provide insight into the role of Krr1-Faf1 interaction in ribosome biogenesis.  相似文献   

13.
Molecular motors of the myosin superfamily share a generic motor domain region. They commonly bind actin in an ATP-sensitive manner, exhibit actin-activated ATPase activity, and generate force and movement in this interaction. Class-18 myosins form heavy chain dimers and contain protein interaction domains located at their unique N-terminal extension. Here, we characterized human myosin-18A molecular function in the interaction with nucleotides, F-actin, and its putative binding partner, the Golgi-associated phosphoprotein GOLPH3. We show that myosin-18A comprises two actin binding sites. One is located in the KE-rich region at the start of the N-terminal extension and appears to mediate ATP-independent binding to F-actin. The second actin-binding site resides in the generic motor domain and is regulated by nucleotide binding in the absence of intrinsic ATP hydrolysis competence. This core motor domain displays its highest actin affinity in the ADP state. Electron micrographs of myosin-18A motor domain-decorated F-actin filaments show a periodic binding pattern independent of the nucleotide state. We show that the PDZ module mediates direct binding of myosin-18A to GOLPH3, and this interaction in turn modulates the actin binding properties of the N-terminal extension. Thus, myosin-18A can act as an actin cross-linker with multiple regulatory modulators that targets interacting proteins or complexes to the actin-based cytoskeleton.  相似文献   

14.
Abstract: We have shown previously that serum inhibits tight junction formation in a retinal epithelial cell culture model for the blood-brain barrier. We have now examined in detail the effects of serum on the tight junctions. Our data show that serum induces a breakdown in tight junction function as indicated by decreased transepithelial electrical resistance and increased permeability. Rat serum had effects similar to those of bovine serum, indicating that the activity is species-independent. The effect is concentration-dependent, reversible, and specific for the apical surface, suggesting the involvement of a specific receptor-ligand interaction. Differences in the time course, response magnitude, and structural manifestations between the serum-induced breakdown and that induced by switching the cultures to a low-calcium medium suggest fundamental differences in their mechanisms. The calcium switch results in an immediate and complete junctional breakdown with cell retraction and perinuclear translocation of both actin and the tight junction protein zonula occludens-1. The serum-induced breakdown occurs slowly, is incomplete, and is manifested structurally by decreases in zonula occludens-1 protein, whereas actin organization is unchanged. Thus, serum induces a specific breakdown in retinal epithelial cell tight junctions that may be mediated by effects on the expression of zonula occludens-1.  相似文献   

15.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

16.
The initial step in initiation of eukaryotic DNA replication involves the assembly of pre-replicative complexes (pre-RCs) at origins of replication during the G1 phase of the cell cycle. In metazoans initiation is inhibited by the regulatory factor Geminin. We have purified the human pre-RC proteins, studied their interactions in vitro with each other and with origin DNA, and analyzed the effects of HsGeminin on formation of DNA-protein complexes. The formation of an initial complex containing the human origin recognition complex (HsORC), HsCdt1, HsCdc6, and origin DNA is cooperative, involving all possible binary interactions among the components. Maximal association of HsMCM2–7, a component of the replicative helicase, requires HsORC, HsCdc6, HsCdt1, and ATP, and is driven by interactions of HsCdt1 and HsCdc6 with multiple HsMCM2–7 subunits. Formation of stable complexes, resistant to high salt, requires ATP hydrolysis. In the absence of HsMCM proteins, HsGeminin inhibits the association of HsCdt1 with DNA or with HsORC-HsCdc6-DNA complexes. However, HsGeminin does not inhibit recruitment of HsMCM2–7 to DNA to form complexes containing all of the pre-RC proteins. In fact, HsGeminin itself is a component of such complexes, and interacts directly with the HsMcm3 and HsMcm5 subunits of HsMCM2–7, as well as with HsCdt1. Although HsGeminin does not prevent the initial formation of DNA-protein complexes containing the pre-RC proteins, it strongly inhibits the formation of stable pre-RCs that are resistant to high salt. We suggest that bound HsGeminin prevents transition of the pre-RC to a state that is competent for initiation of DNA replication.  相似文献   

17.
To thrive in the human body, HIV fuses to its target cell and evades the immune response via several mechanisms. The fusion cascade is initiated by the fusion peptide (FP), which is located at the N-terminal of gp41, the transmembrane protein of HIV. Recently, it has been shown that the HIV-1 FP, particularly its 5–13 amino acid region (FP5–13), suppresses T-cell activation and interacts with the transmembrane domain (TMD) of the T-cell receptor (TCR) complex. Specific amino acid motifs often contribute to such interactions in TMDs of membrane proteins. Using bioinformatics and experimental studies, we report on a GxxxG-like motif (AxxxG), which is conserved in the FP throughout different clades and strains of HIV-1. Biological activity studies and FTIR spectroscopy revealed that HIV FP5–13-derived peptides, in which the motif was altered either by randomization or by a single amino acid shift, lost their immunosuppressive activity concomitant with a loss of the β-sheet structure in a membranous environment. Furthermore, fluorescence studies revealed that the inactive mutants lost their ability to interact with their target site, namely, the TMD of TCRα, designated CP. Importantly, lipotechoic acid activated macrophages (lacking TCR) were not affected by FP, further demonstrating the specificity of the immunosuppressant activity of CP. Finally, although the AxxxG WT and the GxxxG analog both associated with the CP and immunosuppressed T-cells, the AxxxG WT but not the GxxxG analog induced lipid mixing. Overall, the data support an important role for the AxxxG motif in the function of FP and might explain the natural selection of the AxxxG motif rather than the classical GxxxG motif in FP.  相似文献   

18.
MDM2 plays a major role in cancer development and progression via both p53-dependent and -independent functions. One of its p53-independent functions is the induction of the ubiquitin-independent proteasomal degradation of p21Waf1. The present study was designed to characterize the mechanism(s) by which MDM2 induces p21Waf1 degradation. We first determined the regions of MDM2 required for p21Waf1 degradation using pulldown assays and Western blotting and then examined the mechanisms using limited proteolysis and fluorescence resonance energy transfer assays. We found that the MDM2-p21Waf1 interaction depended on the central domain of MDM2 and that nuclear localization of both proteins was necessary for p21Waf1 degradation. Specifically, amino acids 226–250 of MDM2 were required for p21Waf1 binding and degradation, and amino acids 251–260 were necessary for p21Waf1 degradation. The latter region induced a conformation change in p21Waf1, increasing its interaction with the C8 subunit of the proteasome, leading to its degradation. When MDM2 lacked either segment (aa 226–250 or aa 251–260), its capacity to promote p21Waf1 degradation and cell cycle progression was significantly reduced. In summary, the present study elucidated a previously unknown mechanism by which MDM2 promotes the degradation of an intact protein (p21Waf1) through an ubiquitin-independent proteasomal degradation pathway. Because MDM2 also increases the degradation of other proteins in a ubiquitin-independent manner, this mechanism may underlie part of its tumorigenic properties.  相似文献   

19.
The function of the ATP-sensitive potassium (KATP) channel relies on the proper coupling between its two subunits: the pore-forming Kir6.2 and the regulator SUR. The conformation of the interface between these two subunits can be monitored using a rhodamine 123 (Rho) protection assay because Rho blocks Kir6.2 with an efficiency that depends on the relative position of transmembrane domain (TMD) 0 of the associated SUR (Hosy, E., Dérand, R., Revilloud, J., and Vivaudou, M. (2007) J. Physiol. 582, 27–39). Here we find that the natural and synthetic KATP channel activators MgADP, zinc, and SR47063 induced a Rho-insensitive conformation. The activating mutation F132L in SUR1, which causes neonatal diabetes, also rendered the channel resistant to Rho block, suggesting that it stabilized an activated conformation by uncoupling TMD0 from the rest of SUR1. At a nearby residue, the SUR1 mutation E128K impairs trafficking, thereby reducing surface expression and causing hyperinsulinism. To augment channel density at the plasma membrane to investigate the effect of mutating this residue on channel function, we introduced the milder mutation E126A at the matching residue of SUR2A. Mutation E126A imposed a hypersensitive Rho phenotype indicative of a functional uncoupling between TMD0 and Kir6.2. These results suggest that the TMD0-Kir6.2 interface is mobile and that the gating modes of Kir6.2 correlate with distinct positions of TMD0. They further demonstrate that the second intracellular loop of SUR, which contains the two residues studied here, is a key structural element of the TMD0-Kir6.2 interface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号