首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p70 ribosomal protein S6 kinase 1 (S6K1) is regulated by multiple phosphorylation events. Three of these sites are highly conserved among AGC kinases (cAMP dependent Protein Kinase, cGMP dependent Protein Kinase, and Protein Kinase C subfamily): the activation loop in the kinase domain, and two C-terminal sites, the turn motif and the hydrophobic motif. The common dogma has been that phosphorylation of the hydrophobic motif primes S6K1 for the phosphorylation at the activation loop by phosphoinositide-dependent protein kinase 1 (PDK1). Here, we show that the turn motif is, in fact, phosphorylated first, the activation loop second, and the hydrophobic motif is third. Specifically, biochemical analyses of a construct of S6K1 lacking the C-terminal autoinhibitory domain as well as full-length S6K1, reveals that S6K1 is constitutively phosphorylated at the turn motif when expressed in insect cells and becomes phosphorylated in vitro by purified PDK1 at the activation loop. Only the species phosphorylated at the activation loop by PDK1 gets phosphorylated at the hydrophobic motif by mammalian target of rapamycin (mTOR) in vitro. These data are consistent with a previous model in which constitutive phosphorylation of the turn motif provides the key priming step in the phosphorylation of S6K1. The data provide evidence for regulation of S6K1, where hydrophobic motif phosphorylation is not required for PDK1 to phosphorylate S6K1 at the activation loop, but instead activation loop phosphorylation of S6K1 is required for mTOR to phosphorylate the hydrophobic motif of S6K1.  相似文献   

2.
Protein kinase B and p70 S6 kinase are members of the cyclic AMP-dependent/cyclic GMP-dependent/protein kinase C subfamily of protein kinases and are activated by a phosphatidylinositol 3-kinase-dependent pathway when cells are stimulated with insulin or growth factors. Both of these kinases are activated in cells by phosphorylation of a conserved residue in the kinase domain (Thr-308 of protein kinase B (PKB) and Thr-252 of p70 S6 kinase) and another conserved residue located C-terminal to the kinase domain (Ser-473 of PKB and Thr-412 of p70 S6 kinase). Thr-308 of PKBalpha and Thr-252 of p70 S6 kinase are phosphorylated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) in vitro. Recent work has shown that PDK1 interacts with a region of protein kinase C-related kinase-2, termed the PDK1 interacting fragment (PIF). Interaction with PIF converts PDK1 from a form that phosphorylates PKB at Thr-308 alone to a species capable of phosphorylating Ser-473 as well as Thr-308. This suggests that PDK1 may be the enzyme that phosphorylates both residues in vivo. Here we demonstrate that PDK1 is capable of phosphorylating p70 S6 kinase at Thr-412 in vitro. We study the effect of PIF on the ability of PDK1 to phosphorylate p70 S6 kinase. Surprisingly, we find that PDK1 bound to PIF is no longer able to interact with or phosphorylate p70 S6 kinase in vitro at either Thr-252 or Thr-412. The expression of PIF in cells prevents insulin-like growth factor 1 from inducing the activation of the p70 S6 kinase and its phosphorylation at Thr-412. Overexpression of PDK1 in cells induces the phosphorylation of p70 S6 kinase at Thr-412 in unstimulated cells, and a catalytically inactive mutant of PDK1 prevents the phosphorylation of p70 S6K at Thr-412 in insulin-like growth factor 1-stimulated cells. These observations indicate that PDK1 regulates the activation of p70 S6 kinase and provides evidence that PDK1 mediates the phosphorylation of p70 S6 kinase at Thr-412.  相似文献   

3.
The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix αC and the G loop to generate a viable active site. Helix αC adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.  相似文献   

4.
Endogenous IGF-I regulates growth of human intestinal smooth muscle cells by jointly activating phosphatidylinositol 3-kinase (PI3K) and ERK1/2. The 70-kDa ribosomal S6 kinase (p70S6 kinase) is a key regulator of cell growth activated by several independently regulated kinases. The present study characterized the role of p70S6 kinase in IGF-I-induced growth of human intestinal smooth muscle cells and identified the mechanisms of p70S6 kinase activation. IGF-I-induced growth elicited via either the PI3K or ERK1/2 pathway required activation of p70S6 kinase. IGF-I elicited concentration-dependent activation of PI3K, 3-phosphoinositide-dependent kinase-1 (PDK-1), and p70S6 kinase that was sequential and followed similar time courses. IGF-I caused time-dependent and concentration-dependent phosphorylation of p70S6 kinase on Thr(421)/Ser(424), Thr(389), and Thr(229) that paralleled p70S6 kinase activation. p70S6 kinase(Thr(421)/Ser(424)) phosphorylation was PI3K dependent and PDK-1 independent, whereas p70S6 kinase(Thr(389)) and p70S6 kinase(Thr(229)) phosphorylation and p70S6 kinase activation were PI3K dependent and PDK-1 dependent. IGF-I elicited sequential Akt(Ser(308)), Akt(Ser(473)), and mammalian target of rapamycin(Ser(2448)) phosphorylation; however, transfection of muscle cells with kinase-inactive Akt1(K179M) showed that these events were not required for IGF-I to activate p70S6 kinase and stimulate proliferation of human intestinal muscle cells.  相似文献   

5.
The use of nonselective pharmacological inhibitors has resulted in controversy regarding the mechanism and consequences of p38 activation during myocardial infarction. Classic p38 inhibitors such as SB203580 rely on a critical “gatekeeper” threonine residue for binding. We addressed these controversies by using mice in which the p38α alleles were targeted to cause substitution of the gatekeeper residue and resistance to inhibition. In homozygous drug-resistant compared with wild-type hearts, SB203580 failed to inhibit the activating phosphorylation of p38 or to reduce the infarction caused by myocardial ischemia. However, BIRB796, a p38 inhibitor not reliant on the gatekeeper for binding, similarly reduced p38-activating phosphorylation and infarction in both wild-type and knock-in mice, thereby excluding a nonspecific inhibitor-dependent phenotype resulting from the targeting strategy. Furthermore, the activation during myocardial ischemia involved phosphorylation of both the threonine and tyrosine residues in the activation loop of p38 despite the phosphorylation of the threonine alone being sufficient to create the epitope for dual phosphospecific antibody binding. Finally, SB203580 failed to reduce infarction in heterozygous drug-resistant hearts, suggesting that near complete inhibition of p38α kinase activity is necessary to elicit protection. These results indicate that, during myocardial ischemia, p38α (i) is the dominant-active p38 isoform, (ii) contributes to infarction, (iii) is responsible for the cardioprotective effect of SB203580, and (iv) is activated by a mechanism consistent with autodiphosphorylation despite this necessitating the phosphorylation of a tyrosine residue by an archetypal serine/threonine kinase.  相似文献   

6.
3-phosphoinositide-dependent protein kinase-1 (PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases, including protein kinase B, p70 ribosomal S6 kinase, serum and glucocorticoid-inducible kinase, and protein kinase C. PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop. Here, we review the regulatory mechanisms of PDK1 and its roles in cancer. PDK1 is activated by autophosphorylation in the activation loop and other serine residues, as well as by phosphorylation of Tyr-9 and Tyr-373/376. Src appears to recognize PDK1 following tyrosine phosphorylation. The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed. Furthermore, we summarize the subcellular distribution of PDK1. Finally, an important role for PDK1 in cancer chemotherapy is proposed. In conclusion, a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers, and will contribute to the development of novel cancer chemotherapies.  相似文献   

7.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

8.
Pkh1, -2, and -3 are the yeast orthologs of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1). Although essential for viability, their functioning remains poorly understood. Sch9, the yeast protein kinase B and/or S6K ortholog, has been identified as one of their targets. We now have shown that in vitro interaction of Pkh1 and Sch9 depends on the hydrophobic PDK1-interacting fragment pocket in Pkh1 and requires the complementary hydrophobic motif in Sch9. We demonstrated that Pkh1 phosphorylates Sch9 both in vitro and in vivo on its PDK1 site and that this phosphorylation is essential for a wild type cell size. In vivo phosphorylation on this site disappeared during nitrogen deprivation and rapidly increased again upon nitrogen resupplementation. In addition, we have shown here for the first time that the PDK1 site in protein kinase A is phosphorylated by Pkh1 in vitro, that this phosphorylation is Pkh-dependent in vivo and occurs during or shortly after synthesis of the protein kinase A catalytic subunits. Mutagenesis of the PDK1 site in Tpk1 abolished binding of the regulatory subunit and cAMP dependence. As opposed to PDK1 site phosphorylation of Sch9, phosphorylation of the PDK1 site in Tpk1 was not regulated by nitrogen availability. These results bring new insight into the control and prevalence of PDK1 site phosphorylation in yeast by Pkh protein kinases.  相似文献   

9.
Classical mitogen-activated protein (MAP) kinases are activated by dual phosphorylation of the Thr-Xxx-Tyr motif in their activation loop, which is catalyzed by members of the MAP kinase kinase family. The atypical MAP kinases extracellular signal-regulated kinase 3 (ERK3) and ERK4 contain a single phospho-acceptor site in this segment and are not substrates of MAP kinase kinases. Previous studies have shown that ERK3 and ERK4 are phosphorylated on activation loop residue Ser-189/Ser-186, resulting in their catalytic activation. However, the identity of the protein kinase mediating this regulatory event has remained elusive. We have used an unbiased biochemical purification approach to isolate the kinase activity responsible for ERK3 Ser-189 phosphorylation. Here, we report the identification of group I p21-activated kinases (PAKs) as ERK3/ERK4 activation loop kinases. We show that group I PAKs phosphorylate ERK3 and ERK4 on Ser-189 and Ser-186, respectively, both in vitro and in vivo, and that expression of activated Rac1 augments this response. Reciprocally, silencing of PAK1/2/3 expression by RNA interference (RNAi) completely abolishes Rac1-induced Ser-189 phosphorylation of ERK3. Importantly, we demonstrate that PAK-mediated phosphorylation of ERK3/ERK4 results in their enzymatic activation and in downstream activation of MAP kinase-activated protein kinase 5 (MK5) in vivo. Our results reveal that group I PAKs act as upstream activators of ERK3 and ERK4 and unravel a novel PAK-ERK3/ERK4-MK5 signaling pathway.  相似文献   

10.
It has been shown that IGF-1-induced pancreatic beta-cell proliferation is glucose-dependent; however, the mechanisms responsible for this glucose dependence are not known. Adenoviral mediated expression of constitutively active phosphatidylinositol 3-kinase (PI3K) in the pancreatic beta-cells, INS-1, suggested that PI3K was not necessary for glucose-induced beta-cell proliferation but was required for IGF-1-induced mitogenesis. Examination of the signaling components downstream of PI3K, 3-phosphoinositide-dependent kinase 1, protein kinase B (PKB), glycogen synthase kinase-3, and p70-kDa-S6-kinase (p70(S6K)), suggested that a major part of glucose-dependent beta-cell proliferation requires activation of mammalian target of rapamycin/p70(S6K), independent of phosphoinositide-dependent kinase 1/PKB activation. Adenoviral expression of the kinase-dead form of PKB in INS-1 cells decreased IGF-1-induced beta-cell proliferation. However, a surprisingly similar decrease was also observed in adenoviral wild type and constitutively active PKB-infected cells. Upon analysis of extracellular signal-regulated protein kinase 1 and 2 (ERK1/ERK2), an increase in ERK1/ERK2 phosphorylation activation by glucose and IGF-1 was observed in kinase-dead PKB-infected cells, but this phosphorylation activation was inhibited in the constitutively active PKB-infected cells. Hence, there is a requirement for the activation of both ERK1/ERK2 and mammalian target of rapamycin/p70(S6K) signal transduction pathways for a full commitment to glucose-induced pancreatic beta-cell mitogenesis. However, for IGF-1-induced activation, these pathways must be carefully balanced, because chronic activation of one (PI3K/PKB) can lead to dampening of the other (ERK1/2), reducing the mitogenic response.  相似文献   

11.
Lipid-derived signals are central to regulating a multitude of cellular processes but, in plants, little is known of the downstream signalling pathways. The Arabidopsis 3-phosphoinositide-dependent protein kinase (PDK1) could couple lipid signals to the activation of several protein kinases of the so-called AGC kinase family. The Arabidopsis AGC kinases contain sequence motives required for the docking of PDK1 and phosphorylation of their activation loop in the kinase catalytic domain. It is becoming evident that specific members of the AGC kinases are implicated in key growth signalling pathways. For example, Arabidopsis p70(S6K) might be a nodal point able to integrate hormonal and developmental signals with nutritional inputs, together with the Arabidopsis Target of Rapamycin (TOR) protein.  相似文献   

12.
PKB/Akt, S6K, SGK and RSK are mediators of responses triggered by insulin and growth factors and are activated following phosphorylation by 3-phosphoinositide-dependent protein kinase-1 (PDK1). To investigate the importance of a substrate-docking site in the kinase domain of PDK1 termed the 'PIF-pocket', we generated embryonic stem (ES) cells in which both copies of the PDK1 gene were altered by knock-in mutation to express a form of PDK1 retaining catalytic activity, in which the PIF-pocket site was disrupted. The knock-in ES cells were viable, mutant PDK1 was expressed at normal levels and insulin-like growth factor 1 induced normal activation of PKB and phosphorylation of the PKB substrates GSK3 and FKHR. In contrast, S6K, RSK and SGK were not activated, nor were physiological substrates of S6K and RSK phosphorylated. These experiments establish the importance of the PIF-pocket in governing the activation of S6K, RSK, SGK, but not PKB, in vivo. They also illustrate the power of knock-in technology to probe the physiological roles of docking interactions in regulating the specificity of signal transduction pathways.  相似文献   

13.
14.
15.
p70 S6 kinase alpha (p70alpha) is activated in vivo through a multisite phosphorylation in response to mitogens if a sufficient supply of amino acids is available or to high concentrations of amino acids per se. The immunosuppressant drug rapamycin inhibits p70alpha activation in a manner that can be overcome by coexpression of p70alpha with a rapamycin-resistant mutant of the mammalian target of rapamycin (mTOR) but only if the mTOR kinase domain is intact. We report here that a mammalian recombinant p70alpha polypeptide, extracted in an inactive form from rapamycin-treated cells, can be directly phosphorylated by the mTOR kinase in vitro predominantly at the rapamycin-sensitive site Thr-412. mTOR-catalyzed p70alpha phosphorylation in vitro is accompanied by a substantial restoration in p70alpha kinase activity toward its physiologic substrate, the 40 S ribosomal protein S6. Moreover, sequential phosphorylation of p70alpha by mTOR and 3-phosphoinositide-dependent protein kinase 1 in vitro resulted in a synergistic stimulation of p70alpha activity to levels similar to that attained by serum stimulation in vivo. These results indicate that mTOR is likely to function as a direct activator of p70 in vivo, although the relative contribution of mTOR-catalyzed p70 phosphorylation in each of the many circumstances that engender p70 activation remains to be defined.  相似文献   

16.
Protein kinase C-related protein kinases (PRKs) are effectors of the Rho family of small GTPases and play a role in the development of diseases such as prostate cancer and hepatitis C. Here we examined the mechanism underlying the regulation of PRK2 by its N-terminal region. We show that the N-terminal region of PRK2 prevents the interaction with its upstream kinase, the 3-phosphoinositide-dependent kinase 1 (PDK1), which phosphorylates the activation loop of PRK2. We confirm that the N-terminal region directly inhibits the kinase activity of PRK2. However, in contrast to previous models, our data indicate that this inhibition is mediated in trans through an intermolecular PRK2-PRK2 interaction. Our results also suggest that amino acids 487-501, located in the linker region between the N-terminal domains and the catalytic domain, contribute to the PRK2-PRK2 dimer formation. This dimerization is further supported by other N-terminal domains. Additionally, we provide evidence that the region C-terminal to the catalytic domain intramolecularly activates PRK2. Finally, we discovered that the catalytic domain mediates a cross-talk between the inhibitory N-terminal region and the activating C-terminal region. The results presented here describe a novel mechanism of regulation among AGC kinases and offer new insights into potential approaches to pharmacologically regulate PRK2.  相似文献   

17.
刘革修 《生命科学》2005,17(5):387-391
PDK1可调节AGC激酶家族中一些重要蛋白激酶。这些激酶包括蛋白激酶B(PKB/Akt)、p70核小体S6激酶(p70 ribosomal S6 kinase,S6K)、血清和糖皮质激素诱导激酶(SGK)和蛋白激酶C(PKC)等,它们在细胞代谢、生长、增殖和存活等生理过程中具有重要作用。因此,了解PDK1生物学特性可能对其调节的AGC激酶持续活化的癌症治疗具有一定推动作用。本文对PDK1的结构、遗传和生化特点进行了综述。  相似文献   

18.
Phylogenetic analysis has previously shown that plant receptor-like kinases (RLKs) are monophyletic with respect to the kinase domain and share an evolutionary origin with the animal interleukin-1 receptor-associated kinase/Pelle-soluble kinases. The lysin motif domain-containing receptor-like kinase-3 (LYK3) of the legume Medicago truncatula shows 33% amino acid sequence identity with human IRAK-4 over the kinase domain. Using the structure of this animal kinase as a template, homology modeling revealed that the plant RLK contains structural features particular to this group of kinases, including the tyrosine gatekeeper and the N-terminal extension α-helix B. Functional analysis revealed the importance of these conserved features for kinase activity and suggests that kinase activity is essential for the biological role of LYK3 in the establishment of the root nodule nitrogen-fixing symbiosis with rhizobia bacteria. The kinase domain of LYK3 has dual serine/threonine and tyrosine specificity, and mass spectrometry analysis identified seven serine, eight threonine, and one tyrosine residue as autophosphorylation sites in vitro. Three activation loop serine/threonine residues are required for biological activity, and molecular dynamics simulations suggest that Thr-475 is the prototypical phosphorylated residue that interacts with the conserved arginine in the catalytic loop, whereas Ser-471 and Thr-472 may be secondary sites. A threonine in the juxtamembrane region and two threonines in the C-terminal lobe of the kinase domain are important for biological but not kinase activity. We present evidence that the structure-function similarities that we have identified between LYK3 and IRAK-4 may be more widely applicable to plant RLKs in general.  相似文献   

19.
Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.  相似文献   

20.
S6K (ribosomal S6 kinase p70, p70S6K) activation requires phosphorylation at two stages. The first phosphorylation is independent of insulin stimulation and mediated by an unknown kinase. The second phosphorylation is mediated by mTOR in insulin dependent manner. In this study, we identified JNK1 (c-Jun N-terminal kinase 1) as a kinase in the first phosphorylation. S6K protein was phosphorylated by JNK1 at S411 and S424 in the carboxyl terminal autoinhibitory domain. The phosphorylation was observed in kinase assay with purified S6K as a substrate, and in cells after JNK1 activation by TNF-α or MEKK1 expression. The phosphorylation was detected in JNK2 null cells, but not in JNK1 null cells after TNF-α treatment. When JNK1 activation was inhibited by MKK7 knockdown, the phosphorylation was blocked in cells. The phosphorylation led to S6K protein degradation in NF-κB deficient cells. The degradation was blocked by inhibition of proteasome activity with MG132. In wide type cells, the phosphorylation did not promote S6K degradation when IKK2 (IKKβ, IκB kinase beta) was activated. Instead, the phosphorylation allowed S6K activation by mTOR, which stabilizes S6K protein. In IKK2 null cells or cells treated by IKK2 inhibitor, the phosphorylation led to S6K degradation. These data suggest that S6K is phosphorylated by JNK1 and the phosphorylation makes S6K protein unstable in the absence of IKK2 activation. This study provides a mechanism for regulation of S6K protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号