首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendrimers are unique synthetic macromolecules of nanometer dimensions with a highly branched structure and globular shape. Among dendrimers, polyamidoamine (PAMAM) have received most attention as potential transfection agents for gene delivery, because these macromolecules bind DNA at physiological pH. The aim of this study was to examine the interaction of calf-thymus DNA with several dendrimers of different compositions, such as mPEG-PAMAM (G3), mPEG-PAMAM (G4), and PAMAM (G4) at physiological conditions, using constant DNA concentration and various dendrimer contents. FTIR, UV-visible, and CD spectroscopic methods, as well as atomic force microscopy (AFM), were used to analyze the macromolecule binding mode, the binding constant, and the effects of dendrimer complexation on DNA stability, aggregation, condensation, and conformation. Structural analysis showed a strong dendrimer-DNA interaction via major and minor grooves and the backbone phosphate group with overall binding constants of K(mPEG-G3) = 1.5 (±0.5) × 10(3) M(-1), K(mPEG-G4) = 3.4 (±0.80) × 10(3) M(-1), and K(PAMAM-G4) = 8.2 (±0.90) × 10(4) M(-1). The order of stability of polymer-DNA complexation is PAMAM-G4 > mPEG-G4 > mPEG-G3. Both hydrophilic and hydrophobic interactions were observed for dendrimer-DNA complexes. DNA remained in the B-family structure, while biopolymer particle formation and condensation occurred at high dendrimer concentrations.  相似文献   

2.
Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues.  相似文献   

3.
Synthetic polymers of a specific shape and size play major role in drug delivery systems. Dendrimers are unique synthetic macromolecules of nanometer dimensions with a highly branched structure and globular shape with potential applications in gene and drug delivery. We examine the interaction of several dendrimers of different compositions mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4) with hydrophilic and hydrophobic drugs cisplatin, resveratrol, genistein and curcumin at physiological conditions. FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyse drug binding mode, the binding constant and the effects of drug complexation on dendrimer stability and conformation. Structural analysis showed that cisplatin binds dendrimers in hydrophilic mode via Pt cation and polymer terminal NH(2) groups, while curcumin, genistein and resveratrol are located mainly in the cavities binding through both hydrophobic and hydrophilic contacts. The overall binding constants of durg-dendrimers are ranging from 10(2) M(-1) to 10(3) M(-1). The affinity of dendrimer binding was PAMAM-G4>mPEG-PAMAM-G4>mPEG-PAMAM-G3, while the order of drug-polymer stability was curcumin>cisplatin>genistein>resveratrol. Molecular modeling showed larger stability for genisten-PAMAM-G4 (ΔG = -4.75 kcal/mol) than curcumin-PAMAM-G4 ((ΔG = -4.53 kcal/mol) and resveratrol-PAMAM-G4 ((ΔG = -4.39 kcal/mol). Dendrimers might act as carriers to transport hydrophobic and hydrophilic drugs.  相似文献   

4.
Poly(ethylene glycol) (PEG) and its derivatives are synthetic polymers with major applications in gene and drug delivery systems. Synthetic polymers are also used to transport miRNA and siRNA in vitro. We studied the interaction of tRNA with several PEGs of different compositions, such as PEG 3350, PEG 6000, and mPEG-anthracene under physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods as well as atomic force microscopy (AFM) were used to analyze the PEG binding mode, the binding constant, and the effects of polymer complexation on tRNA stability, aggregation, and particle formation. Structural analysis showed that PEG-tRNA interaction occurs via RNA bases and the backbone phosphate group with both hydrophilic and hydrophobic contacts. The overall binding constants of K(PEG?3350-tRNA)= 1.9 (±0.5) × 10(4) M(-1), K(PEG?6000-tRNA) = 8.9 (±1) × 10(4) M(-1), and K(mPEG-anthracene)= 1.2 (±0.40) × 10(3) M(-1) show stronger polymer-RNA complexation by PEG 6000 and by PEG 3350 than the mPEG-anthracene. AFM imaging showed that PEG complexes contain on average one tRNA with PEG 3350, five tRNA with PEG 6000, and ten tRNA molecules with mPEG-anthracene. tRNA aggregation and particle formation occurred at high polymer concentrations, whereas it remains in A-family structure.  相似文献   

5.
Antioxidants are essential to good health. Flavonoids are powerful antioxidants, and prevent DNA damage. The antioxidative protections are related to their binding modes to a DNA duplex and complexation with free radicals in vivo. Recently we reported the interaction of flavonoids with DNA in vitro (Kanakis et al., J. Biomol. Struct. Dyn. 22, 719-724, 2005), where polyphenol different binding modes were discussed. The aim of this study was to examine the interaction of transfer RNA with quercetin (que), kaempferol (kae), and delphinidin (del) in aqueous solution at physiological conditions and to make a comparison with the corresponding pigment-DNA adducts. Constant tRNA concentration (6.25 mM) and various drug/RNA(phosphate) molar ratios of 1/48 to 1/8 were used. FTIR and UV-visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants, and the effects of drug complexation on the stability and conformation of tRNA duplex. Both intercalative and external binding modes were observed. Structural analysis showed que, kae, and a del intercalate tRNA duplex with minor external binding to the major or minor groove and the backbone phosphate group with overall binding constants K (que) = 4.80 x 10(4) M(1), K (kae) = 4.65 x 10(4) M(1), and K (del) = 9.47 x 10(4) M(1). The stability of adduct formation is in the order of del > que > kae. A comparison with flavonoids-DNA adducts showed both intercalation and external bindings with the stability order K (que) = 7.25 x 10(4) M(1), K (kae) = 3.60 x 10(4) M(1), and K (del) = 1.66 x 10(4) M(1). Low flavonoid concentration induces helical stabilization, whereas high pigment content causes helix opening. A partial Bto A-DNA transition occurs at high drug concentration, while tRNA remains in the A-family structure.  相似文献   

6.
Saffron is the red dried stigmas of Crocus sativus L. flowers and used both as a spice and as a drug in traditional therapeutic. The biological activity of saffron in modern medicine is in development. Its numerous applications as an anti-oxidant and anti-cancer agent are due to its secondary metabolites and their derivatives (safranal, crocins, crocetin, dimethylcrocetin). The aim of this study was to examine the interaction of transfer RNA with safranal, crocetin, and dimethylcrocetin in aqueous solution at physiological conditions. Constant tRNA concentration (6.25 mM) and various drug/tRNA (phosphate) molar ratios of 1/48 to 1/8 were used. FT-IR and UV-Visible difference spectroscopic methods have been applied to determine the drug binding mode, the binding constants and the effects of drug complexation on the stability and conformation of tRNA duplex. External binding mode was observed for safranal crocetin and dimethylcrocetin, with overall binding constants K(safranal) = 6.8 (+/- 0.34) x 10(3) M(-1), K(CRT) = 1.4 (+/- 0.31) x 10(4) M(-1), and K(DMCRT) = 3.4 (+/- 0.30) x 10(4) M(-1). Transfer RNA remains in the A-family structure, upon safranal, crocetin and dimethylcrocetin complexation.  相似文献   

7.
The anticancer platinum (Pt) drugs exert their antitumor activity by direct or indirect Pt-DNA binding. It has been shown that Pt drugs can induce major DNA damage and minor RNA damage during cancer treatment. A recent report showed that a new anticancer estradiol-Pt(II) hybrid molecule (CD-37) binds DNA bases indirectly, while being more effective than cis-diaminedichloroplatinum(II) (cisplatin) against several types of cancer. In this report, we examine the bindings of CD-37 and cisplatin drugs with transfer RNA (tRNA) in vitro and compare the results to those of the corresponding Pt-DNA complexes. Solutions containing various CD-37 or cisplatin concentrations were reacted with tRNA at physiological pH. Using Fourier transform infrared (FTIR), UV-visible, and circular dichroism spectroscopic methods, the drug binding mode, the binding constant, and RNA structural variations are determined for Pt-tRNA complexes in aqueous solution. Structural analysis showed direct binding of cisplatin drug to guanine and adenine N7 sites, while both direct and indirect interactions of CD-37 with tRNA bases and the backbone phosphate group were observed. The overall binding constants estimated were K(CD-37) = 2.77 (+/-0.90) x 10(4) M(1) and K(cisplatin) = 1.72 (+/-0.50) x 10(4) M(1). Major aggregation of tRNA occurs at high CD-37 concentrations, while RNA remains in the A-family structure.  相似文献   

8.
The effects of 4th and 5th generation cationic, neutral and anionic polyamidoamine (PAMAM) dendrimers on bilirubin absorbance and fluorescence were studied. Cationic and neutral PAMAM dendrimers shifted the bilirubin absorption maximum from 435 to 442-455 nm, increased the peak absorbance 1.5-fold, shifted the bilirubin fluorescence excitation and emission maxima, increased the fluorescence emission several-fold and significantly protected bilirubin against photodestruction. Using double fluorescence titration technique allowed to receive such constant of binding and the number of binding centers at 20 degrees C: for PAMAM G4 dendrimer, (2.4+/-1.4) x 10(6) (mol/l)(-1) and 0.07+/-0.012; for PAMAM G4-OH dendrimer, (3.1+/-1.3) x 10(6) (mol/l)(-1) and 0.08+/-0.014; for PAMAM G5 dendrimer, (7.6+/-3.6) x 10(6) (mol/l)(-1) and 0.09+/-0.02; and for PAMAM G5-OH dendrimer, (8.5+/-3.2) x 10(6) (mol/l)(-1) and 0.09+/-0.02. These effects can be explained by the formation of bilirubin-PAMAM dendrimer complexes and the formation of bilirubin monomers from tetramers. The formation of complexes sharply increased bilirubin solubility. We conclude that cationic and neutral PAMAM dendrimers bind bilirubin effectively and suggest that such dendrimers may serve as detoxication agents for hydrophobic endogenous toxins.  相似文献   

9.
10.
Despite considerable interest and investigations on cationic lipid–DNA complexes, reports on lipid–RNA interaction are very limited. In contrast to lipid–DNA complexes where lipid binding induces partial B to A and B to C conformational changes, lipid–tRNA complexation preserves tRNA folded state. This study is the first attempt to investigate the binding of cationic lipid with transfer RNA and the effect of lipid complexation on tRNA aggregation and condensation. We examine the interaction of tRNA with cholesterol (Chol), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethylammoniumbromide (DDAB) and dioleoylphosphatidylethanolamine (DOPE), at physiological condition, using constant tRNA concentration and various lipid contents. FTIR, UV-visible, CD spectroscopic methods and atomic force microscopy (AFM) were used to analyze lipid binding site, the binding constant and the effects of lipid interaction on tRNA stability, conformation and condensation. Structural analysis showed lipid–tRNA interactions with G–C and A–U base pairs as well as the backbone phosphate group with overall binding constants of KChol = 5.94 (± 0.8) × 104 M–1, KDDAB = 8.33 (± 0.90) × 105 M–1, KDOTAP = 1.05 (± 0.30) × 105 M–1 and KDOPE = 2.75 (± 0.50) × 104 M–1. The order of stability of lipid–tRNA complexation is DDAB > DOTAP > Chol > DOPE. Hydrophobic interactions between lipid aliphatic tails and tRNA were observed. RNA remains in A-family structure, while biopolymer aggregation and condensation occurred at high lipid concentrations.  相似文献   

11.
Isothermal calorimetric studies of the binding of iron(III) citrate to ferric ion binding protein from Neisseria gonorrhoeae suggested the complexation of a tetranuclear iron(III) cluster as a single step binding event (apparent binding constant K(app) (ITC) = 6.0(5) × 10(5) M(-1)). High-resolution Fourier transform ion cyclotron resonance mass spectrometric data supported the binding of a tetranuclear oxo(hydroxo) iron(III) cluster of formula [Fe(4)O(2)(OH)(4)(H(2)O)(cit)](+) in the interdomain binding cleft of FbpA. The mutant H9Y-nFbpA showed a twofold increase in the apparent binding constant [K(app) (ITC) = 1.1(7) × 10(6) M(-1)] for the tetranuclear iron(III) cluster compared to the wild-type protein. M?ssbauer spectra of Escherichia coli cells overexpressing FbpA and cultured in the presence of added (57)Fe citrate were indicative of the presence of dinuclear and polynuclear clusters. FbpA therefore appears to have a strong affinity for iron clusters in iron-rich environments, a property which might endow the protein with new biological functions.  相似文献   

12.
Novel polyester-co-polyether dendrimers consisting of a hydrophilic core were synthesized by a combination of convergent and divergent syntheses. The core was synthesized from biocompatible moieties, butanetetracarboxylic acid and aspartic acid, and the dendrons from PEO (poly(ethylene oxide)), dihydroxybenzoic acid or gallic acid, and PEG monomethacrylate. The dendrimers, Den-1-(G 2) (second generation dendrimer-1) and Den-2-(G 2) (second generation dendrimer-2) consisting of 16 and 24 allyl surface groups, respectively, were obtained by coupling the dendrons to the core. The dendrimer (Den-1-(G 2)-OH) with hydroxyl groups at the surface was synthesized by oxidation of the allyl functional groups of Den-1-(G 2), which was divergently coupled to the dendrons to obtain the third generation dendrimer Den-1-(G 3) consisting of 32 surface groups. The modifications in surface groups and generation of dendrimers were shown to influence the shape of dendrimers in the AFM studies. The aggregation as well as self-assembly of dendrimers was observed at high concentration in water by light scattering studies; however, it was reduced on dilution and in the presence of sodium chloride. Dendrimers demonstrated good ability to encapsulate the guest molecule, with loading of 15.80 and 6.47% w/w for rhodamine and beta-carotene, respectively. UV spectroscopy proved the absence of any pi-pi complexation between the dendrimer and encapsulated compounds. (1)H NMR and FTIR studies showed that the physical entrapment and/or hydrogen bonding by PEO in the interior and branch of the dendrimer are the mechanisms of encapsulation. The release of the encapsulated compounds was found to be slow and sustained, suggesting that these dendrimers can serve as potential drug delivery vehicles.  相似文献   

13.
Glycyrrhizin (GL), a molecule of glycyrrhetinic acid (GA), is an aqueous extract from licorice root. These compounds are well known for their anti-inflammatory, hepatocarcinogenesis, antiviral, and interferon-inducing activities. This study is the first attempt to investigate the binding of GL and GA with DNA. The effect of ligand complexation on DNA aggregation and condensation was investigated in aqueous solution at physiological conditions, using constant DNA concentration (6.25?mM) and various ligands/polynucleotide (phosphate) ratios of 1/240, 1/120, 1/80, 1/40, 1/20, 1/10, 1/5, 1/2, and 1/1. Fourier transform infrared and ultraviolet (UV)-visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of ligand-DNA complexes in aqueous solution. Spectroscopic evidence showed that GL and GA bind DNA via major and minor grooves as well as the backbone phosphate group with overall binding constants of K(GL-DNA)=5.7×10(3) M(-1), K(GA-DNA)=5.1×10(3) M(-1). The affinity of ligand-DNA binding is in the order of GL>GA. DNA remained in the B-family structure, whereas biopolymer aggregation occurred at high triterpenoid concentrations.  相似文献   

14.
Huang RY  Rempel DL  Gross ML 《Biochemistry》2011,50(24):5426-5435
Troponin C (TnC), present in all striated muscle, is the Ca(2+)-activated trigger that initiates myocyte contraction. The binding of Ca(2+) to TnC initiates a cascade of conformational changes involving the constituent proteins of the thin filament. The functional properties of TnC and its ability to bind Ca(2+) have significant regulatory influence on the contractile reaction of muscle. Changes in TnC may also correlate with cardiac and various other muscle-related diseases. We report here the implementation of the PLIMSTEX strategy (protein ligand interaction by mass spectrometry, titration, and H/D exchange) to elucidate the binding affinity of TnC with Ca(2+) and, more importantly, to determine the order of Ca(2+) binding of the four EF hands of the protein. The four equilibrium constants, K(1) = (5 ± 5) × 10(7) M(-1), K(2) = (1.8 ± 0.8) × 10(7) M(-1), K(3) = (4.2 ± 0.9) × 10(6) M(-1), and K(4) = (1.6 ± 0.6) × 10(6) M(-1), agree well with determinations by other methods and serve to increase our confidence in the PLIMSTEX approach. We determined the order of binding to the four EF hands to be III, IV, II, and I by extracting from the H/DX results the deuterium patterns for each EF hand for each state of the protein (apo through fully Ca(2+) bound). This approach, demonstrated for the first time, may be general for determining binding orders of metal ions and other ligands to proteins.  相似文献   

15.
Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of K(Pb-HSA)?=?8.2 (±0.8)×10(4) M(-1) and K(Pb-BSA)?=?7.5 (±0.7)×10(4) M(-1). The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization.  相似文献   

16.
The involvement of the Fe cations in autoxidation in cells and tissues is well documented. DNA is a major target in such reaction, and can chelate Fe cation in many ways. The present study was designed to examine the interaction of calf-thymus DNA with Fe(II) and Fe(III), in aqueous solution at pH 6.5 with cation/DNA (P) (P = phosphate) molar ratios (r) of 1:160 to 1:2. Capillary electrophoresis and Fourier transform infrared (FTIR) difference spectroscopic methods were used to determine the cation binding site, the binding constant, helix stability and DNA conformation in Fe-DNA complexes. Structural analysis showed that at low cation concentration (r = 1/80 and 1/40), Fe(II) binds DNA through guanine N-7 and the backbone PO(2) group with specific binding constants of K(G) = 5.40 x 10(4) M(1) and K(P) = 2.40 x 10(4) M(1). At higher cation content, Fe(II) bindings to adenine N-7 and thymine O-2 are included. The Fe(III) cation shows stronger interaction with DNA bases and the backbone phosphate group. At low cation concentration (r = 1:80), Fe(III) binds mainly to the backbone phosphate group, while at higher metal ion content, cation binding to both guanine N-7 atom and the backbone phosphate group is prevailing with specific binding constants of K(G) = 1.36 x 10(5) M(-1) and K(P) = 5.50 x 10(4) M(-1). At r = 1:10, Fe(II) binding causes a minor helix destabilization, whereas Fe(III) induces DNA condensation. No major DNA conformational changes occurred upon iron complexation and DNA remains in the B-family structure.  相似文献   

17.
Cationic dendrimers such as poly(amidoamine) (PAMAM) and poly(propyleneimine) (PPI) have attractive characteristics for the delivery of nucleic acid and various biomedical applications. Most studies have focused on cationic dendrimer-based intracellular delivery, and very few studies have focused on the non-specific interaction of remnant cationic dendrimers with total RNA after isolation directly from cells in vitro. We examined RNA isolation using the common method of monophasic lysis from human macrophage-like cells (U937) and mouse fibroblast cells (NIH/3T3) that had been exposed to dendrimers and DNA/dendrimer complexes using gel electrophoresis. We found that PAMAM and PPI dendrimers strongly altered the mobility of RNA in the gels. In addition, the extent of dendrimer-induced alteration in RNA mobility was directly dendrimer-generation-dependent: the alteration was greater with higher-generation dendrimers. We also found that DNA/dendrimer complexes at higher dendrimer to DNA ratios interacted with RNA after isolation while gene expression was maintained. The interactions between RNA and remnant dendrimers after isolation were caused by electrostatic bindings, and we recovered total RNA using high ionic strength solvents (2M NaCl solution) to disrupt the electrostatic forces binding dendrimers to RNA. Because RNA isolation is routinely used for biological applications, such dendrimer-induced alteration in RNA mobility should be accounted for in the further processing of RNA-related applications.  相似文献   

18.
Charles I  Davis E  Arya DP 《Biochemistry》2012,51(27):5496-5505
Antisense strategies that target DNA·RNA hybrid structures offer potential for the development of new therapeutic drugs. The α-sarcin loop region of the 16S rRNA domain has been shown to be a high value target for such strategies. Herein, aminoglycoside interaction with three RNA·DNA α-sarcin targeted duplexes (rR·dY, rR·S-dY, and rR·2'OMe-rY) have been investigated to determine the overall effect of aminoglycoside interaction on the stability, affinity, and conformation of these hybrid duplexes. To this end, UV thermal denaturation, circular dichroism spectroscopy, fluorescence intercalator displacement, and ITC as well as DSC calorimetry experiments were carried out. The results suggest the following. (1) Of all the aminoglycosides studied, neomycin confers the highest thermal stability on all three hybrid duplexes studied. (2) There is no appreciable difference in aminoglycoside-induced thermal stability between the unmodified rR·dY and phophorothioate modified rR·S-dY duplexes. (3) The rR·2'OMe-rY duplexes thermal stability is slightly less than the other two hybrids. (4) In all three duplexes, aminoglycoside-induced thermal stability decreased as the number of amino groups decreased. (5) CD scans revealed similar spectra for the rR·dY and rR·S-dY duplexes as well as a more pronounced A-form signal for the rR·2'OMe-rY duplex. (6) FID assays paralleled the CD results, yielding similar affinity values between the rR·dY and rR·S-dY duplexes and higher affinities with the rR·2'OMe-rY duplex. (7) The overall affinity trend between aminoglycosides and the three duplexes was determined to be neomycin > paromomycin > neamine > ribostamycin. (8) ITC K(a) values revealed similar binding constants for the rR·dY and rR·S-dY duplexes with rR·dY having a K(1) of (1.03 ± 0.58) × 10(7) M(-1) and K(2) of (1.13 ± 0.07) × 10(5) M(-1) while rR·S-dY produced a K(1) of (1.17 ± 0.54) × 10(7) M(-1) and K(2) of (1.27 ± 0.69) × 10(5) M(-1). (8) The rR·2'OMe-rY produced a slightly higher binding constant values with a K(1) of (1.25 ± 0.24) × 10(7) M(-1) and K(2) of (3.62 ± 0.18) × 10(5) M(-1). (9) The ΔT(m)-derived K(Tm) of 3.81 × 10(7) M(-1) for rR·S-dY was in relative agreement with the corresponding K(1) of 1.17 × 10(7) M(-1) derived constant from the fitted ITC. These results illustrate that the increased DNA·RNA hybrid duplex stability in the presence of aminoglycosides can help extend the roles of aminoglycosides in designing modified ODNs for targeting RNA.  相似文献   

19.
Xi H  Davis E  Ranjan N  Xue L  Hyde-Volpe D  Arya DP 《Biochemistry》2011,50(42):9088-9113
Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)·poly(rA), and poly(rA)·poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNA·RNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)·poly(rU), K(a) = 9.4 × 10(6) M(-1), and for poly(rA)·poly(dT), K(a) = 3.1 × 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)·2poly(dT) yields a binding affinity (K(a)) of 2.4 × 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)·poly(rU) > poly(rA)·poly(dT) > T·A-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations.  相似文献   

20.
Arsenic salts have been used for centuries to treat a variety of medical conditions ranging from infectious disease to cancer. More recently, trivalent arsenic trioxide was found to exhibit high antitumor activity towards hematological malignancies. Even though much is known about antitumor activity and DNA damage by As2O3, there has been no report on the interaction of arsenic trioxide with isolated DNA or RNA. Therefore, it was of interest to examine the interaction of As2O3 with DNA and RNA in aqueous solution at physiological pH. FTIR and UV-visible difference spectroscopic methods were used to characterize the nature of drug-DNA and drug-RNA interactions and to determine the As binding site, the binding constant, the sequence selectivity, the helix stability, and the biopolymer secondary structure in the As2O3-polynucleotide complexes in vitro. The FTIR spectroscopic studies were conducted with As2O3-polynucleotide (phosphate) ratios of 1/40, 1/20, 1/10, and 1/5, with a final DNA (P) or RNA (P) concentration of 6.25 mmol/l. Spectroscopic results showed As2O3 binds to DNA and RNA at G-C, A-T, and A-U bases, and no interaction with the backbone PO2 group. As2O3-DNA and -RNA adducts showed one type of binding with overall binding constant of K(As2O3-DNA) = 1.24 x 10(5) M(-1) and K(As2O3-RNA) = 2.60 x 10(5) M(-1). The As2O3-polynucleotide complexation is associated with a partial biopolymer aggregation and no major alterations of B-DNA or A-RNA structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号