首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Loss of the tumor suppression activity of p53 is required for the progression of most human cancers. In this context, p53 gene is somatically mutated in about half of all human cancers; in the rest human cancers, p53 is mostly inactivated due to the disruption of pathways important for its activation. Most p53 cancer mutations are missense mutations within the core domain, leading to the expression of full-length mutant p53 protein. The expression of p53 mutants is usually correlated with the poor prognosis of the cancer patients. Accumulating evidence has indicated that p53 cancer mutants not only lose the tumor suppression activity of WT p53, but also gain novel oncogenic activities to promote tumorigenesis and drug resistance. Therefore, to improve current cancer therapy, it is critical to elucidate the gain-of-functions of p53 cancer mutants. By analyzing the humanized p53 mutant knock-in mouse models, we have identified a new gain of function of the common p53 cancer mutants in inducing genetic instability by disrupting ATM-mediated cellular responses to DNA double-stranded break (DSB) damage. Considering that some current cancer therapies such as radiotherapy kills the cancer cells by inducing DSBs in their genome DNA, our findings will have important implications on the treatment of human cancers that express common p53 mutants.  相似文献   

3.
Lung cancer development involves multiple genetic abnormalities leading to malignant transformation of the bronchial epithelial cells, followed by invasion and metastasis. One of the most common changes is mutation of the p53 tumor suppressor gene. The frequency of p53 alterations in lung cancer is highest in small cell and squamous cell carcinomas. A genetic “signature” of the type of p53 mutations has been associated with carcinogens in cigarette smoke. The majority of clinical studies suggest that lung cancers with p53 alterations carry a worse prognosis, and may be relatively more resistant to chemotherapy and radiation. An understanding of the role of p53 in human lung cancer may lead to more rational targeted approaches for treating this disease. P53 gene replacement is currently under clinical investigation but clearly more effective means of gene deliver to the tumor cells are required. Novel approaches to lung cancer therapy are needed to improve the observed poor patient survival despite current therapies.  相似文献   

4.
Increasing emphasis has been given to prevention as a feasible approach to reduce the cancer burden. However, for its clinical success, further advances are required to identify effective chemopreventive agents. This review affords a critical and up-to-date discussion of issues related to cancer prevention, including an in-depth knowledge on BRCA1 and p53 tumor suppressor proteins as key molecular players. Indeed, it compiles the most recent advances on the topic, highlighting the unique potential of BRCA1 and p53 germline mutations as molecular biomarkers for risk assessment and targets for chemoprevention. Relevant evidences are herein provided supporting the effectiveness of distinct pharmacological agents in cancer prevention, by targeting BRCA1 and p53. Moreover, the rationale for using germline mutant BRCA1- or p53-related cancer syndromes as model systems to investigate effective chemopreventive agents is also addressed. Altogether, this work provides an innovative conception about the dependence on p53 and BRCA1 co-inactivation in tumor formation and development, emphasizing the relationship between these two proteins as an encouraging direction for future personalized pharmacological interventions in cancer prevention.  相似文献   

5.
Loss of function of p53, either through mutations in the gene or through mutations to other members of the pathway that inactivate wild-type p53, remains a critically important aspect of human cancer development. As such, p53 remains the most commonly mutated gene in human cancer. For these reasons, pharmacologic activation of the p53 pathway has been a highly sought after, yet unachieved goal in developmental therapeutics. Recently progress has been made not only in the discovery of small molecules that target wild-type and mutant p53, but also in the initiation and completion of the first in-human clinical trials for several of these drugs. Here, we review the current literature of drugs that target wild-type and mutant p53 with a focus on small-molecule type compounds. We discuss common means of drug discovery and group them according to their common mechanisms of action. Lastly, we review the current status of the various drugs in the development process and identify newer areas of p53 tumor biology that may prove therapeutically useful.  相似文献   

6.
Gastric cancer is highly refractory to DNA-damaging therapies. We therefore studied both gene mutation and protein expression of p53 and Bax in a cohort of 116 patients with gastric cancer who underwent R0-resection with a curative intent. Bax mutation was independent from severe microsatellite instability (MSI), that is, global mismatch repair deficiency as determined by analysis of BAT-25/BAT-26 microsatellite markers. Thus, Bax-frameshift mutation is a feature of tumors with low MSI. In contrast and as expected, no p53 mutations were observed in the microsatellite instable tumors. p53 Mutation or p53 overexpression did not have an impact on disease prognosis. p53-Inactivation was, however, associated with an extremely poor prognosis in the subgroup of patients with Bax-mutated tumors. Thus, we show for the first time that the combined mutation of p53 and Bax, two key regulators of the mitochondrial apoptosis pathway, results in an extremely aggressive tumor biology and poor clinical prognosis.  相似文献   

7.
Inactivation of p53 has been shown to correlate with poor prognosis and drug resistance in malignant tumors. Nevertheless, few reports have directly shown such effects in primary tumor cells. Here, we investigated the p53 mutational status in 138 B-CLL samples and compared these findings with drug and gamma-irradiation sensitivity profiles. p53 mutations resulted not only in a shorter survival but, notably also in selective resistance to alkylating agents, fludarabine and gamma-irradiation. In contrast, no such effect was observed for vincristine, anthracyclines and glucocorticoids. Thus, these latter compounds induce cell death at least in part by p53-independent pathways. Interestingly, p53 mutations clustered in patients who had received prior chemotherapy. In fact, we show for the first time that treatment with DNA-damaging alkylating agents correlates with occurrence of p53 mutations in a clinical setting. This finding may explain at least to some extent the development of resistance to second-line anticancer chemotherapy.  相似文献   

8.
The standard classification used to define the various cancer genes confines tumor protein p53 (TP53) to the role of a tumor suppressor gene. However, it is now an indisputable fact that many p53 mutants act as oncogenic proteins. This statement is based on multiple arguments including the mutation signature of the TP53 gene in human cancer, the various gains-of-function (GOFs) of the different p53 mutants and the heterogeneous phenotypes developed by knock-in mouse strains modeling several human TP53 mutations. In this review, we will shatter the classical and traditional image of tumor protein p53 (TP53) as a tumor suppressor gene by emphasizing its multiple oncogenic properties that make it a potential therapeutic target that should not be underestimated. Analysis of the data generated by the various cancer genome projects highlights the high frequency of TP53 mutations and reveals that several p53 hotspot mutants are the most common oncoprotein variants expressed in several types of tumors. The use of Muller''s classical definition of mutations based on quantitative and qualitative consequences on the protein product, such as ‘amorph'', ‘hypomorph'', ‘hypermorph'' ‘neomorph'' or ‘antimorph'', allows a more meaningful assessment of the consequences of cancer gene modifications, their potential clinical significance, and clearly demonstrates that the TP53 gene is an atypical cancer gene.  相似文献   

9.
10.
The TP53 tumor suppressor gene is mutated in many human tumors, including common types of cancer such as colon and ovarian cancer. This illustrates the key role of p53 as trigger of cell cycle arrest or cell death upon oncogenic stress. Most TP53 mutations are missense mutations that result in single amino acid substitutions in p53 and expression of high levels of dysfunctional p53 protein. Restoration of wild type p53 function in such tumor cells will induce robust cell death and allow efficient eradication of the tumor. Therapeutic targeting of mutant p53 in tumors is a rapidly developing field at the forefront of translational cancer research. Various approaches have led to the identification of small molecules that can rescue mutant p53. These include compounds that target specific p53 mutations, including PK083 and PK5174 (Y220C mutant p53) and NSC319726 (R175H mutant p53), as well as PRIMA-1 and its analog APR-246 that affect a wider range of mutant p53 proteins. APR-246 has been tested in a Phase I/II clinical trial with promising results.  相似文献   

11.
The importance of p53 in chemotherapy-induced apoptosis of cancer cells is well established. p53 plays a critical role in the cellular response to DNA damage by regulating genes involved in cell cycle progression, apoptosis, and genomic stability. As a result, p53 tumor status is a critical determinant of both responses to anti-cancer treatment and clinical prognosis. Interestingly, tumors expressing certain mutant forms of p53 ("gain of function") are particularly resistant to chemotherapy, even when compared to cells that lack any detectable p53. Until recently, the explanation for this enhanced chemoresistance was not clear. Recent studies have shown that the p53 homologues, p73 and p63, are also activated by chemotherapies, leading to tumor cell death. Now the discovery that mutant p53 interacts with p73, and that regulation of this interaction by a p53 polymorphism can modulate chemosensitvity provide a new model for how p53-family interactions can influence the response of tumors to anti-cancer therapies. Since p53 mutations are found in more than 50% of human tumors, strategies aimed at manipulating these interactions may prove useful in enhancing the chemotherapy response, and perhaps, overcoming chemoresistance.  相似文献   

12.
The importance of p53 in chemotherapy-induced apoptosis of cancer cells is well established. p53 plays a critical role in the cellular response to DNA damage by regulating genes involved in cell cycle progression, apoptosis, and genomic stability. As a result, p53 tumor status is a critical determinant of both responses to anti-cancer treatment and clinical prognosis. Interestingly, tumors expressing certain mutant forms of p53 (“gain of function”) are particularly resistant to chemotherapy, even when compared to cells that lack any detectable p53. Until recently, the explanation for this enhanced chemoresistance was not clear. Recent studies have shown that the p53 homologues, p73 and p63, are also activated by chemotherapies, leading to tumor cell death. Now the discovery that mutant p53 interacts with p73, and that regulation of this interaction by a p53 polymorphism can modulate chemosensitvity provide a new model for how p53-family interactions can influence the response of tumors to anti-cancer therapies. Since p53 mutations are found in more than 50% of human tumors, strategies aimed at manipulating these interactions may prove useful in enhancing the chemotherapy response, and perhaps, overcoming chemoresistance.  相似文献   

13.
Study of the p53 tumor suppressor has blossomed into a field of its own. From analysis of its mutations in several different cancers to deciphering the function of the protein in human cells, publications describing research on p53 annually number in the thousands. In the interest of presenting the most up-to-date information on the progress of cancer research involving p53, the workshop "p53: Twenty Years On" was organized in Trieste, Italy over May 20-22, 1999. The meeting highlighted some of the most exciting basic and clinical scientific findings on p53 within the last year.  相似文献   

14.
p53 is one of the most mutated genes in human cancer. We have performed the molecular characterization of p53 and have searched for correlations with etiological factors and clinical parameters in primary and secondary liver tumors. A systematic study was carried out, innovative in many respects, to determine the mutational pattern of all 11 exons of p53 and analysis was extended also to exons 1–4 and 9–11 and the exon/intron junctions. Our analyses were performed on case histories of 114 patients from the European area and highlighted p53 mutation patterns different from those reported in the literature for the same tumors. In our case history, different tumors of the same organ showed a different frequency and distribution of mutations. In analyzed tumor types, gene status was a prognostic indicator of survival because patients undergoing liver resection without mutated p53 had a more favorable prognosis than mutated patients. This suggests p53 molecular diagnosis could become a further criterion in the decision for surgery and possible therapies. We describe the ideal conditions for polymerase chain reaction (PCR), single-strand conformation polymorphism (SSCP), and direct sequencing, which we have set in order to optimize yields, sensitivity, and time of what might become a massive molecular screening.  相似文献   

15.
p53 mutations, occurring in two-thirds of all human cancers, confer a gain of function phenotype, including the ability to form metastasis, the determining feature in the prognosis of most human cancer. This effect seems mediated at least partially by its ability to physically interact with p63, thus affecting a cell invasion pathway, and accordingly, p63 is deregulated in human cancers. In addition, p63, as an 'epithelial organizer', directly impinges on epidermal mesenchimal transition, stemness, senescence, cell death and cell cycle arrest, all determinant in cancer, and thus p63 affects chemosensitivity and chemoresistance. This demonstrates an important role for p63 in cancer development and its progression, and the aim of this review is to set this new evidence that links p63 to metastasis within the context of the long conserved other functions of p63.  相似文献   

16.
The p53 tumor suppressor: Critical regulator of life & death in cancer   总被引:4,自引:0,他引:4  
p53 is the most commonly mutated or deleted known gene in human cancer. The consequences of its disruption are profound, either in the germlines of patients with Li-Fraumeni Syndrome, or in mice with targeted gene knockouts. Abundant evidence suggests that p53 exerts regulation of cell cycle progression as well as apoptotic cell death, both in response to identical environmental or metabolic stressors. The specific decision of cell cycle arrest vs. death may underlie p53's differential ability to trigger death in cancer cells and arrest with repair in non-cancer cells, thus producing a therapeutic index pertinent to cancer therapy. Indeed, p53 status is likely to correlate with prognosis in many human cancers and in multiple animal tumor models. The mechanistic basis for p53's functions are still emerging, and will hopefully yield new therapeutic strategies applicable to treatment of the many poor-prognosis, p53-deficient human malignancies.  相似文献   

17.
The p53 protein plays an important role in cancer prevention. In response to stress signals, p53 controls essential cell functions by regulating expression of its target genes. Full or partial loss of the p53 function in cancer cells usually results from mutations of the p53 gene. Some of them are temperature-dependent, allowing reactivation of the p53 function in certain temperature. These mutations can alter general transactivation ability of the p53 protein or they modify its transactivation only towards specific genes. We analyzed transactivation of several target genes by 23 temperature-dependent p53 mutants and stratified them into four functional groups. Seventeen p53 mutants exhibited temperature-dependency and discriminative character in human and yeast cells. Despite the differences of yeast and human cells, they allowed similar transactivation rates to the p53 mutants, thus providing evidence that functional analysis of separated alleles in yeast is valuable tool for assessment of the human p53 status.  相似文献   

18.
BACKGROUND: Alterations in the p53 tumor suppressor gene constitute one of the most frequent genetic events associated with the development of human cancers. Determination of an individual's p53 status may be of value in early diagnosis, prediction of response to treatment, and for the detection of minimal residual cancer. Recent studies have also revealed that specific mutations affecting the p53 gene are associated with a poor outcome. The majority of tumor biopsies that are sent for study in the laboratory contain neoplastic cells intermingled with stroma, such that the detection of alterations in the p53 gene requires a tumor enrichment technique and/or highly sensitive mutation detection technologies. Thus, it is desirable that a clinically useful assay for detecting point mutations in the p53 gene function in the presence of significant quantities of wild-type sequence and identify the critical sequence aberrations. MATERIALS AND METHODS: We utilized molecular beacons in a real-time allele-specific PCR format to obtain reference data on samples of quantitatively known p53 mutation status. These data have been statistically analyzed and the results used to detect p53 mutations, indicating the presence of occult tumor. RESULTS: We describe validation of a simple, rapid, sensitive, and quantitative ARMS assay for identifying the levels of 80 point mutations within the p53 gene that, when mutated, constitute at least 1% of the total p53 sequences. CONCLUSIONS: The assay successfully identifies rare p53 gene mutations in clinical samples and overcomes many of the limitations of current technologies.  相似文献   

19.
p53 is a critical mediator of cellular responses to a variety of stresses. Given the frequency of p53 mutations in human malignancies and that disruption of p53 has been implicated in chemoresistance, understanding the factors that select for p53 disruption is important both for understanding tumor evolution and for designing cancer therapies. While it is widely believed that genotoxic stress selects for p53 mutations, the effects of DNA damaging agents on long-term proliferative potential are usually not affected by p53 status. Previous reports have demonstrated that despite being activated, p53 loss does not prevent cell cycle arrest and senescence in response to high levels of acute replicational stress. In contrast, we recently reported that chronic exposure of non-transformed cells to low, clinically relevant levels of replicational stress induces p53-dependent senescence-like arrest. Disruption of p53 or its target gene p21CIP1 antagonizes this arrest, leading to a long-term proliferative advantage. However, when replicational stress is associated with substantial DNA strand breaks, the ability of p53 disruption to up-regulate RAD51 dependent homologous recombination becomes important. Replicational stress is induced by many chemotherapeutic treatments and perhaps by some dietary deficiencies, and may be an important factor that selects for p53 mutations during cancer initiation and progression.  相似文献   

20.
Mutation of the TP53 tumor suppressor gene is the most common genetic alteration in cancer, and almost 1000 alleles have been identified in human tumors. While virtually all TP53 mutations are thought to compromise wild type p53 activity, the prevalence and recurrence of missense TP53 alleles has motivated countless research studies aimed at understanding the function of the resulting mutant p53 protein. The data from these studies support three distinct, but perhaps not necessarily mutually exclusive, mechanisms for how different p53 mutants impact cancer: first, they lose the ability to execute wild type p53 functions to varying degrees; second, they act as a dominant negative (DN) inhibitor of wild type p53 tumor-suppressive programs; and third, they may gain oncogenic functions that go beyond mere p53 inactivation. Of these possibilities, the gain of function (GOF) hypothesis is the most controversial, in part due to the dizzying array of biological functions that have been attributed to different mutant p53 proteins. Herein we discuss the current state of understanding of TP53 allele variation in cancer and recent reports that both support and challenge the p53 GOF model. In these studies and others, researchers are turning to more systematic approaches to profile TP53 mutations, which may ultimately determine once and for all how different TP53 mutations act as cancer drivers and whether tumors harboring distinct mutations are phenotypically unique. From a clinical perspective, such information could lead to new therapeutic approaches targeting the effects of different TP53 alleles and/or better sub-stratification of patients harboring TP53 mutant cancers.Subject terms: Cancer genetics, Tumour-suppressor proteins  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号