首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu Y  Mazzawi M  Chen K  Sun L  Dubin PL 《Biomacromolecules》2011,12(5):1512-1522
The effect of polyelectrolyte binding affinity on selective coacervation of proteins with the cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDADMAC), was investigated for bovine serum albumin/β-lactoglobulin (BSA/BLG) and for the isoforms BLG-A/BLG-B. High-sensitivity turbidimetric titrations were used to define conditions of complex formation and coacervation (pH(c) and pH(?), respectively) as a function of ionic strength. The resultant phase boundaries, essential for the choice of conditions for selective coacervation for the chosen protein pairs, are nonmonotonic with respect to ionic strength, for both pH(c) and pH(?). These results are explained in the context of short-range attraction/long-range repulsion governing initial protein binding "on the wrong side of pI" and also subsequent phase separation due to charge neutralization. The stronger binding of BLG despite its higher isoelectric point, inferred from lower pH(c), is shown to result from the negative "charge patch" on BLG, absent for BSA, as visualized via computer modeling (DelPhi). The higher affinity of BLG versus BSA was also confirmed by isothermal titration calorimetry (ITC). The relative values of pH(?) for the two proteins show complex salt dependence so that the choice of ionic strength determines the order of coacervation, whereas the choice of pH controls the yield of the target protein. Coacervation at I = 100 mM, pH 7, of BLG from a 1:1 (w/w) mixture with BSA was shown by SEC to provide 90% purity of BLG with a 20-fold increase in concentration. Ultrafiltration was shown to remove effectively the polymer from the target protein. The relationship between protein charge anisotropy and binding affinity and between binding affinity and selective coacervation, inferred from the results for BLG/BSA, was tested using the isoforms of BLG. Substitution of glycine in BLG-B by aspartate in BLG-A lowers pH(c) by 0.2, as anticipated on the basis of DelPhi modeling. The stronger binding of BLG-A, confirmed by ITC, led to a difference in pH(?) that was sufficient to provide enrichment by a factor of 2 for BLG-A in the coacervate formed from "native BLG".  相似文献   

2.
The interaction of gum arabic (GA) and bovine serum albumin (BSA) has been investigated through turbidity and light scattering intensity measurements and by the use of dynamic light scattering, laser Doppler velocimetry, and isothermal titration calorimetry. It has been shown that GA and BSA can form soluble and insoluble complexes depending on the solution pH and the mixing ratio and is a function of the net charge on the complex. Soluble complexes were obtained when the electrophoretic mobility was greater than ±1. 5 μm s(-1) V(-1) cm(-1). Changes in the value of the isoelectric point of the complexes with mixing ratio and isothermal titration calorimetric data indicated that complexes formed at pHs 3 and 4 consisted of ~60 BSA molecules for every GA molecule, while at pH 5 there were ~10 BSA molecules per GA molecule. Calorimetric studies also indicated that the interaction occurred in two stages at both pH 3 and pH 4, but that the nature of the interaction at these two pH values was significantly different. This was attributed to differences in the relative magnitude of the positive and negative charges on the BSA and GA, respectively, and possibly due to changes in the BSA conformation. The fact that there is an interaction at pH 5, which is above the isoelectric point of the BSA, is due to the interaction of the carboxylate groups on the GA with positive patches on the BSA or to the charge regulation of the protein-polysaccharide system brought about by changes in dissociation equilibria. Complexation is reduced as the ionic strength of the solvent increases and is prevented at a NaCl concentration of 120 mM.  相似文献   

3.
Xu Y  Seeman D  Yan Y  Sun L  Post J  Dubin PL 《Biomacromolecules》2012,13(5):1642-1651
The effect of heparin on both native and denatured protein aggregation was investigated by turbidimetry and dynamic light scattering (DLS). Turbidimetric data show that heparin is capable of inhibiting and reversing the native aggregation of bovine serum albumin (BSA), β-lactoglobulin (BLG), and Zn-insulin at a pH near pI and at low ionic strength I; however, the results vary with regard to the range of pH, I, and protein-heparin stoichiometry required to achieve these effects. The kinetics of this process were studied to determine the mechanism by which interaction with heparin could result in inhibition or reversal of native protein aggregates. For each protein, the binding of heparin to distinctive intermediate aggregates formed at different times in the aggregation process dictates the outcome of complexation. This differential binding was explained by changes in the affinity of a given protein for heparin, partly due to the effects of protein charge anisotropy as visualized by electrostatic modeling. The heparin effect can be further extended to include inhibition of denaturing protein aggregation, as seen from the kinetics of BLG aggregation under conditions of thermally induced unfolding with and without heparin.  相似文献   

4.
Formation of complexes between bovine beta-lactoglobulins (BLG) and long-chain fatty acids (FAs), effect of complex formation on protein stability, and effects of pH and ionic strength on both complex formation and protein stability were investigated as a function of pH and ionic strength by electrophoretic techniques and NMR spectroscopy. The stability of BLG against unfolding is sharply affected by the pH of the medium: both A and B BLG variants are maximally stabilized against urea denaturation at acidic pH and against SDS denaturation at alkaline pH. The complexes of BLGB with oleic (OA) and palmitic acid (PA) appear more stable than the apoprotein at neutral pH whereas no differential behavior is observed in acidic and alkaline media. PA forms with BLG more stable complexes than OA. The difference between the denaturant concentration able to bring about protein unfolding in the holo versus the apo forms is larger for urea than for SDS treatment. This evidence disfavors the hypothesis of strong hydrophobic interactions being involved in complex formation. Conversely, a significant contribution to FA binding by ionic interactions is demonstrated by the effect of pH and of chloride ion concentration on the stoichiometry of FA.BLG complexes. At neutral pH in a low ionic strength buffer, one molecule of FA is bound per BLG monomer; this ratio decreases to ca. 0.5 per monomer in the presence of 200 mM NaCl. The polar heads of bound FA appear to be solvent accessible, and carboxyl resonances exhibit an NMR titration curve with an apparent pK(a) of 4.7(1).  相似文献   

5.
The complexation between hen egg white lysozyme (HEWL) and a novel pH-sensitive and intrinsically hydrophobic polyelectrolyte poly(sodium(sulfamate-carboxylate)isoprene) (SCPI), was investigated by means of dynamic, static, and electrophoretic light scattering and isothermal titration calorimetry measurements. The complexation process was studied at both pH 7 and 3 (high and low charge density of the SCPI, respectively) and under low ionic strength conditions for two polyelectrolyte samples of different molecular weights. The solution behavior, structure, and effective charge of the formed complexes proved to be dependent on the pH, the [-]/[+] charge ratio, and the molecular weight of the polyelectrolyte. Increasing the ionic strength of the solution led to vast aggregation and eventually precipitation of the complexes. The interaction between HEWL and SCPI was found to be mainly electrostatic, associated with an exothermic enthalpy change. The structural investigation of the complexed protein by fluorescence, infrared, circular dichroism spectroscopic, and differential scanning calorimetric measurements revealed no signs of denaturation upon complexation.  相似文献   

6.
The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.  相似文献   

7.
Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications.  相似文献   

8.
Bovine beta-lactoglobulin (BLG) is a globular protein of uncertain physiological function and a member of the lipocalin superfamily of proteins. Here, we present the X-ray structure at 3.0 angstroms of BLG (variant A) from an orthorhombic (P2(1)2(1)2(1)) pseudo-tetragonal crystal form that suffers from pseudo-merohedral twinning (final R(working) = 0.224, R(free) = 0.265). Crystals were grown by dialysis against ultra-purified water (i.e., at very low ionic strength), at pH approximately 5.2 (approximately pI), conditions vastly different from all other BLG structures determined previously. This allows critical assessment of the BLG structure and of the influence that pH, ionic strength, and crystal packing may have on the molecular structure of BLG. The pH-sensitive EF loop is found in the closed conformation characteristic of BLG at pH less than 7 and moderate to high ionic strength. Although the hydrophobic pocket appears to be empty, the presence of highly disordered water molecules cannot be excluded. The dimer interface and the hydrophobic pocket (calyx) are preserved. However, the orientation of the subunits in the dimer varies considerably with crystal form. Structure is deposited with PDB ID 2akq.  相似文献   

9.
Chitosan is a biocompatible easily degradable polysaccharide, which, because of its positive charge, is able to interact favorably with deprotonated carboxyl groups of proteins. The strength of these charge-charge interactions is generally low, resulting in poor colloidal stability of the complexes. To investigate if other noncovalent forces contribute to stabilizing such systems, we have selected α-lactalbumin, β-lactoglobulin, β-casein, and human growth hormone, characterized by a common acidic pI value (~ 5) that ensures their overall negative charge at physiological pH. Binding energetics between chitosan and proteins was studied by isothermal titration calorimetry, whereas the thermal stability was assessed by differential scanning calorimetry. Our data show that colloidal stability of the particles depends on protein identity as well as temperature, indicating the involvement of nonelectrostatic interactions (e.g., hydrophobic effect) as driving forces for the complex formation. This suggests that chitosan-protein drug delivery systems can be improved through preparation process optimization with regard to temperature.  相似文献   

10.
Bovine beta-Lactoglobulin (BLG) has been studied for many decades, but only recently structural data have been obtained, making it possible to simulate its molecular properties. In the present study, electrostatic properties of BLG are investigated theoretically using Poisson-Boltzmann calculations and experimentally following pH titration via NMR. Electrostatic properties are determined for several structural models, including an ensemble of NMR structures obtained at low pH. The changes in electrostatic forces upon changes in ionic strength, solvent dielectric constant, and pH are calculated and compared with experiments. pK(a)s are computed for all titratable sites and compared with NMR titration data. The analysis of theoretical and experimental results suggests that (1) there may be more than one binding sites for negatively charged ligands; (2) at low pH the core of the molecule is more compact than observed in the structures obtained via restrained molecular dynamics from NMR data, but loop and terminal regions must be disordered.  相似文献   

11.
Bovine serum albumin (BSA) causes tobacco mosaic virus (TMV) to crystallize at pH values where both have negative charges. The amount of albumin required to precipitate the virus varies inversely with ionic strength of added electrolyte. At pH values above 5, the precipitating power is greatest when BSA has the maximum total, positive plus negative, charge. Unlike early stages of the crystallization of TMV in ammonium sulfate-phosphate solutions, which can be reversed by lowering the temperature, the precipitation of TMV by BSA is not readily reversed by changes in temperature. The logarithm of the apparent solubility of TMV in BSA solutions, at constant ionic strength of added electrolyte, decreases linearly with increasing BSA concentration. This result and the correlation of precipitating power with total BSA charge suggest that BSA acts in the manner of a salting-out agent. The effect of BSA on the reversible entropy-driven polymerization of TMV protein (TMVP) depends on BSA concentration, pH, and ionic strength. In general, BSA promotes TMVP polymerization, and this effect increases with increasing BSA concentrations. The effect is larger at pH 6.5 than at pH 6. Even though increasing ionic strength promotes polymerization of TMVP in absence of BSA, the effect of increasing ionic strength from 0.08 to 0.18 at pH 6.5 decreases the polymerization-promoting effect of BSA. Likewise, the presence of BSA decreases the polymerization-promoting effect of ionic strength. The polymerization-promoting effect of BSA can be interpreted in terms of a process akin to salting-out. The mutual suppression of the polymerization-promoting effects of BSA and of electrolytes by each other can be partially explained in terms of salting-in of BSA.  相似文献   

12.
Thoppil AA  Sharma R  Kishore N 《Biopolymers》2008,89(10):831-840
Binding of the antibiotic drug carbenicillin to bovine serum albumin (BSA) has been studied using isothermal titration calorimetry (ITC) in combination with fluorescence and circular dichroism (CD) spectroscopies. The thermodynamic parameters of binding have been evaluated as a function of temperature, ionic strength, and in the presence of anionic, cationic and nonionic surfactants, tetrabutylammonium bromide, and sucrose. The values of van't Hoff enthalpy do not agree with the calorimetric enthalpy indicating conformational changes in the protein upon drug binding. These observations are supported by the intrinsic fluorescence and CD spectroscopic measurements. A reduction in the binding affinity of carbenicillin to BSA is observed with increase in ionic strength of the solution, thereby suggesting, prevailing of electrostatic interactions in the binding process. The involvement of hydrophobic interactions in the binding of the drug to the protein is also indicated by a slight reduction in binding constant in the presence of tetrabutylammonium bromide. The experiments in the presence of sucrose suggest that hydrogen bonding is perhaps not dominant in the binding. The anionic surfactant sodium dodecyl sulphate (SDS) is observed to completely interfere in the ionic interactions in addition to its partial denaturing capacity. However, the presence of cationic surfactant hexadecyl trimethylammonium bromide (HTAB) and nonionic surfactant Triton-X 100 induce a slight reduction in the values of binding affinity. These calorimetric and spectroscopic results, provide quantitative information on the binding of carbenicillin to BSA and suggests that the binding is dominated by electrostatic interactions with contribution from hydrophobic interactions. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 831-840, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

13.
Electrostatic interactions can have a significant impact on protein transmission through semipermeable membranes. Experimental data for the transport of bovine serum albumin (BSA) through a polyethersulfone ultrafiltration membrane were obtained in different salt solutions over a range of pH and salt concentrations. Net BSA charge under the same conditions was evaluated from mobility data measured by capillary electrophoresis. The results show that specific ionic composition, in addition to solution pH and ionic strength, can strongly affect the rate of protein transport through semipermeable ultrafiltration membranes. The effects of different ions on BSA sieving are due primarily to differences in ion binding to the protein, which leads to significant differences in the net protein charge at a given pH and ionic strength. This effect could be described in terms of an effective protein radius, which accounts for the electrostatic exclusion of the charged protein from the membrane pores. These results provide important insights into the nature of the electrostatic interactions in membrane systems.  相似文献   

14.
The binding constant (K(obs)) for the beta-lactoglobulin-poly(vinylsulfate) (BLG-PVS) complex was measured by frontal analysis continuous capillary electrophoresis at pH values above the isoelectric point of BLG, and the persistence length (L(p)) of PVS was measured by small angle neutron scattering, to examine the effect of polyelectrolyte chain stiffness on its binding efficiency to proteins. The values of K(obs) and L(p) were compared with those of BLG-PSS and BLG-PAMPS (poly(2-acrylamido-2-methylpropanesulfonate)) reported previously. The relationship between K(obs) and L(p) was reciprocal, indicating that protein binding is enhanced by the flexibility of the polyanion, at least in the case where the net protein charge is negative. In addition, at a fixed pH, the polymer systems displayed a similar ionic strength dependence of K(obs). This similarity was consistent with the proposal that the binding properties of PVS and PAMPS polyanions are governed purely by electrostatic interactions and are independent of their molecular structure.  相似文献   

15.
In this study, we used ITC (isothermal titration calorimetry) to quantitatively investigate the impacts of temperature and protein concentration on adsorption behavior on a solid surface, using BSA (bovine serum albumin) as a model protein, and alum (aluminum hydroxide) gel as an adsorbent. The zeta potential measurement for alum gel (0.25 mV at pH 9.3) revealed that its surface charge was not strong enough for electrostatic interaction. ITC analysis showed that the BSA-alum gel interaction was entropy-driven, suggesting that during adsorption, water molecules were expelled from the hydration layers of the alum gel and BSA. Therefore, the major mechanism for the BSA-alum gel interaction was hydrophobic interaction rather than electrostatic interaction. This biothermodynamic approach can be helpful not only to identify interaction mechanisms, but also to explore the optimum conditions for protein-adsorbent interactions.  相似文献   

16.
Of all the techniques that are currently available to measure binding, isothermal titration calorimetry is the only one capable of measuring not only the magnitude of the binding affinity but also the magnitude of the two thermodynamic terms that define the binding affinity: the enthalpy (AH) and entropy (AS) changes. Recent advances in instrumentation have facilitated the development of experimental designs that permit the direct measurement of arbitrarily high binding affinities, the coupling of binding to protonation/deprotonation processes and the analysis of binding thermodynamics in terms of structural parameters. Because isothermal titration calorimetry has the capability to measure different energetic contributions to the binding affinity, it provides a unique bridge between computational and experimental analysis. As such, it is increasingly becoming an essential tool in molecular design.  相似文献   

17.
Recent evidence supports a role for proteoglycans in polycation-mediated gene delivery. Therefore, the interaction of glycosaminoglycans with cationic lipid-DNA complexes (CLDCs) has been characterized using a combination of biophysical approaches. At low ionic strength, CLDCs bind to heparin-derivatized Sepharose particles, with the ratio of cationic lipid to DNA controlling the binding. Incorporation of the helper lipids cholesterol or 1,2-dioleoyl-phosphatidylethanolamine increases the amount of bound CLDC. Heparin also induces the aggregation of CLDCs, with cholesterol reducing this effect. Isothermal titration calorimetry demonstrates an endothermic heat for the binding of heparin to CLDCs at low ionic strength, whereas circular dichroism studies suggest a heparin-stimulated release of DNA from CLDCs at a greater than 20-fold charge excess. Increasing the ionic strength to 0.11 reduces CLDC binding to heparin beads, and greatly enhances the release of DNA from CLDCs by heparin. The ability of the cell surface glycosaminoglycan heparan sulfate to release DNA from CLDCs is more sensitive than heparin to the incorporation of the cholesterol or 1,2-dioleoyl-phosphatidylethanolamine. Titration calorimetry reveals an exothermic heat for the interaction glycosaminoglycans with CLDCs at higher ionic strength. These results are consistent with the direct involvement of proteoglycans in transfection.  相似文献   

18.
Liquid-liquid phase separation was studied for a monoclonal antibody in the monovalent salt solutions of KF, KCl, and KSCN under different pH conditions. A modified Carnahan-Starling hard-sphere model was utilized to fit the experimental data, establish the liquid-liquid coexistence curve, and determine antibody-antibody interactions in the form of Tc (critical temperature) under the different solution conditions. The liquid-liquid phase separation revealed the complex relationships between antibody-antibody interactions and different solution conditions, such as pH, ionic strength, and the type of anion. At pH 7.1, close to the pI of the antibody, a decrease of Tc versus ionic strength was observed at low salt conditions, suggesting that the protein-protein interactions became less attractive. At a pH value below the pI of the antibody, a nonmonotonic relationship of Tc versus ionic strength was apparent: initially as the ionic strength increased, protein-protein interactions became more attractive with the effectiveness of the anions following the inverse Hofmeister series; then the interactions became less attractive following the direct Hofmeister series. This nonmonotonic relationship may be explained by combining the charge neutralization by the anions, perhaps with the ion-correlation force for polarizable anions, and their preferential interactions with the antibody.  相似文献   

19.
We have applied isothermal titration calorimetry to investigate the linkage between ligand binding and the uptake or release of protons by human serum albumin (HSA) and bovine serum albumin (BSA). The ligands were sodium decyl sulfate (SDeS) and sodium dodecyl sulfate (SDS). Within a certain temperature range, the binding isotherm could be clearly resolved into two classes of sites (high affinity and low affinity) and modeled assuming independence and thermodynamic equivalence of the sites within each class. Measurements at pH 7.0 in different buffer systems revealed that the binding of SDS to the high affinity sites did not couple to any exchange of protons in either of the proteins. Saturation of the 6-8 low affinity sites for SDS, on the other hand, brought about the release of two protons from both HSA and BSA. In addition to elucidating the pH dependence of ligand binding, this analysis stressed that binding enthalpies for the low affinity sites measured by calorimetry must be corrected for effects due to the concomitant protonation of the buffer. The shorter ligand SDeS bound to HSA with a comparable stoichiometry but with four times lower affinity. Interestingly, no proton linkage was observed for the binding of SDeS. An empirical structural analysis suggested that His 242 in site 7 (of HSA) is a likely candidate for one of the proton donors.  相似文献   

20.
M B Sankaram  P J Brophy  D Marsh 《Biochemistry》1989,28(25):9685-9691
Electron spin resonance (ESR) spectroscopy and chemical binding assays were used to study the interaction of bovine spinal cord myelin basic protein (MBP) with dimyristoylphosphatidylglycerol (DMPG) membranes. Increasing binding of MBP to DMPG bilayers resulted in an increasing motional restriction of PG spin-labeled at the C-5 atom position in the acyl chain, up to a maximum degree of association of 1 MBP molecule per 36 lipid molecules. ESR spectra of PG spin-labels labeled at other positions in the sn-2 chain showed a similar motional restriction, while still preserving the chain flexibility gradient characteristic of fluid lipid bilayers. In addition, labels at the C-12 and C-14 atom positions gave two-component spectra, suggesting a partial hydrophobic penetration of the MBP into the bilayer. Spectral subtractions were used to quantitate the membrane penetration in terms of the stoichiometry of the lipid-protein complexes. Approximately 50% of the spin-labeled lipid chains were directly affected at saturation protein binding. The salt and pH dependence of the ESR spectra and of the protein binding demonstrated that electrostatic interaction of the basic residues of the MBP with the PG headgroups is necessary for an effective association of the MBP with phospholipid bilayers. Binding of the protein, and concomitant perturbation of the lipid chain mobility, was reduced as the ionic strength increased, until at salt concentrations above 1 M NaCl the protein was no longer bound. The binding and ESR spectral perturbation also decreased as the protein charge was reduced by pH titration to above the pI of the protein at approximately pH 10.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号