首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of conductive composites cellulose–polyaniline (PANI) were heterogeneously synthesized by chemical oxidative polymerization of aniline with native cellulose activated by various acids. The chemical structure and morphology of the composites were examined by FT-IR analysis and TEM. TGA was used to study their thermal properties. The composites prepared using the di-basic acids exhibited more favorable conductivity than the composites prepared using the monobasic acids. The content of PANI increased with increasing of activation time, and while the conductivity decreased because of the aggregation of PANI particles at the activation time range from 50 to 120 min. Both the PANI content and the electrical conductivity increased with an increase of the amount of aniline, and reached the maximum values at the 0.5 g aniline, respectively. The acids were able to successfully activate cellulose and lead to the improvement of the accessibility and reactivity of the O–H groups. The composites were highly stable compared to pure cellulose due to the safeguard from PANI slices. This work provided a facile method for the synthesis of cellulose–polyaniline conductive composites with excellent conductivity.  相似文献   

2.
Mixed hydrogels based on natural, biodegradable and biocompatible polysaccharides, such as cellulose (C) and chondroitin sulphate (CS) in various mixing ratios were prepared by a crosslinking technique and characterized by swelling behaviour, FTIR spectroscopy, scanning electron microscopy, toxicity and biocompatibility tests.The mixed cellulose/chondroitin sulphate hydrogels have been loaded with 7-[2-nitroxiacetyl-oxy-3-(4-acetyl-amino-phenoxy)-propyl]-8-morpholino-1,3-dimethyl-xanthine, a novel nitric oxide donor compound with a lower toxicity and a higher anti-inflammatory activity than its parent molecules, paracetamol and theophylline. Swelling and release kinetics have been also studied. It has been established that an increase of CS content in hydrogels composition leads to a higher swelling ratio for all formulations and to a decreased released amount of nitric oxide donor compound. It has been found that the swelling occurs by an anomalous swelling mechanism, while the release of nitric oxide donor compound follows a diffusion controlled mechanism.  相似文献   

3.
The various degree of methacrylate (MA) substitution on chondroitin sulfate (CS) was prepared by reacting chondroitin sulfate with methacrylic anhydride (MAA) in the presence of sodium hydroxide (NaOH) as a base. The effects of reaction time, reaction temperature, MAA concentration, and NaOH amount on the substitution degree of CS-MA were tested. The confirmation of the CS-MA chemical structure was carried out by 1H-NMR, 13C-NMR, FTIR and the degree of MA substituent on CS was calculated from the ratios of two peak intensities corresponding to methyl groups on methacrylate and chondroitin sulfate, respectively. Hydrogels were prepared by free radical polymerization of CS-MA precursors with or without acrylic acid (AA). CS-MA hydrogels were easily broken into small pieces during swelling study. However, CS-MA-AA hydrogels remained completely and showed a range of swelling ratio from 200 to 390% and exhibited an increase in swelling ratio with a decreasing degree of MA substitution. The thermal degradability observed with a TGA explained the unstableness of these hydrogels in comparison with the pure CS. The surface morphology conducted by SEM exhibited a porous structure after swelling.  相似文献   

4.
Thermo-sensitive poly(N-isopropyl acrylamide-co-vinyl pyrrolidone)/chitosan [P(NIPAM-co-NVP)/CS] semi-IPN hydrogels with improved loading capacity and sustained release for anionic drugs NAP were prepared by free-radical polymerization. The LCST of hydrogels was adjusted to the vicinity of body temperature by introducing hydrophilic NVP. The presence of CS in semi-IPN networks improves the swelling behavior and provides a high affinity for anionic drug NAP due to the strong interactions between NAP molecules and CS chains. Release of NAP was suppressed at pH 2.2 and 5.0 and accelerated at pH 7.4 due to the deprotonation of amino groups in CS. Increasing temperature above LCST, hydrogels showed a continuous release of NAP without burst diffusion due to the shrinkage of PNIPAM restraining the drug release.  相似文献   

5.
Psyllium is a medicinally important polysaccharide and its modification with methacrylamide through radiation crosslinked polymerization will develop hydrogels meant for drug delivery applications. The present paper deals with the preparation of hydrogels and their characterization by SEMs, FTIR, TGA and swelling studies. The release dynamics of model antibiotic drug rifampicin from the hydrogels has been studied for the evaluation of the release mechanism. The values of the diffusion exponent ‘n’ have been obtained (0.64, 0.58 and 0.57), respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer. The release of the drug from the hydrogels occurred through non-Fickian diffusion mechanism.  相似文献   

6.
Biocompatible hydrogels based on water-soluble chitosan–ethylene glycol acrylate methacrylate (CS–EGAMA) and polyethylene glycol diamethacrylate (PEGDMA) were synthesized by photopolymerization. Characterization of morphology, weight loss, water state of hydrogel, pH-sensitivity and cytotoxicity were investigated by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), swelling test and methylthiazolydiphenyl-tetrazolium bromide (MTT) assay. The results indicated that the hydrogels were sensitive to pH of the medium, no cytotoxicity for L929 and SW1353, satisfactory for the composite to be used in bioapplications.  相似文献   

7.
A series of semi-interpenetrating polymer network (semi-IPN) materials were prepared by blending polymerization of acrylic acid (AA) in cationic starch (CS) and poly(methacryloyloxyethyl trimethylammonium chloride) (PDMC) solution. The crosslinker concentration, the feed ratio of the CS-g-AA to PDMC was discussed in term of the swelling capacity, and hydrogel properties were evaluated by network parameters Mc, morphological and compressive load tests. The semi-IPN hydrogels were also characterized by FT-IR spectroscopy to confirm the interactions between CS-g-AA and PDMC. Electron microscopy involved to staining of the anionic phases using CsF showed a transition from two-phase to compatible structure with the increasing content of PDMC, and further confirmed that the semi-IPN structure in hydrogels along with DSC. The resultant semi-IPN hydrogels were found to possess appreciable compatibility, good swellability and mechanical strength.  相似文献   

8.
A novel thermosensitive and hydrogel was designed and synthesized by graft copolymerization of N-isopropylacrylamide (NIPAAm) with biodegradable carboxymethylchitosan (CMCS). The influence of the content of CMCS grafted on the properties of the resulted hydrogels was examined. The morphology of the hydrogels was observed by scanning electron microscopy (SEM), their thermal property was characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and deswelling/swelling kinetics upon external temperature changes. In comparison with the conventional PNIPAAm hydrogels, the resulted hydrogels have improved thermosensitive properties, including enlarged water content at room temperature and faster deswelling/swelling rate upon heating. The strategy described here presents a potential alternative to the traditional synthesis techniques for thermosensitive hydrogels.  相似文献   

9.
Interpenetrating networks (IPN) poly(acrylamide-aniline) polymer was synthesized by a two-steps aqueous polymerization method, which aniline monomer was absorbed in the network of polyacrylamide and followed by a polymerization reaction between aniline monomers. The poly(acrylamide-aniline) hydrogel possessed a conductivity of 25.28 mS cm−1. An interpenetrating network structure model with a three-dimensional network of polyacrylamide and a one-dimensional chain of polyaniline for poly(acrylamide-aniline) conducting hydrogel was proposed, and a conduction mechanism with charge carriers (protons) hopping along the polyaniline chain was suggested. The poly(acrylamide-aniline) hydrogels have predominant thermo-sensitivity. Poly(acrylamide-aniline) hydrogels possess loading and releasing properties, an anomalous release mechanism is found.  相似文献   

10.
Physically cross-linked novel block copolymer hydrogels with tunable hydrophilic properties for biomedical applications were synthesized by controlled radical polymerization of polyurethane macroiniferter and (2,2-dimethyl-1,3-dioxolane) methyl methacrylate. The block copolymers were converted to hydrogels by the selective hydrolysis of poly[(2,2-dimethyl-1,3-dioxolane) methyl methacrylate] block to poly(glycerol methacrylate). The block copolymerization has been monitored by monomer conversion and molecular weight increase as a function of time. It was observed that the polymerization proceeded with a characteristic "living" behavior where both monomer conversion and molecular weight increased linearly, with increasing reaction time. The resulting hydrogels were investigated for their equilibrium water content (EWC), dynamic water contact angles, swelling kinetics, thermodynamic interaction parameters, plasma protein adsorption, and platelet adhesion. Similar to our previous mechanically responsive hydrogels (Mequanint, K.; Sheardown, H. J. Biomater. Sci. Polym. Ed. 2005, 10, 1303-1318), the present results indicated that block copolymer hydrogels have excellent hydrophilicity and swelling behavior with improved modulus of elasticity. The equilibrium swelling was affected by the hydrolysis time, block length of poly(glycerol methacrylate), temperature, and the presence of soluble salts. Fibrinogen adsorption and platelet adhesion were significantly lower for the hydrogels than for the control polyurethane, whereas albumin adsorption increased for the hydrogels in proportion to the contents of poly(glycerol methacrylate). These hydrogels have potential in a number of biomedical applications such as drug delivery and scaffolds for tissue engineering.  相似文献   

11.
Hyaluronan (HA) based hydrogels have been synthesized combining chemical modification of the polysaccharide by partial oxidation, reductive amination and 'click chemistry'. HA was oxidized by 4-acetamido-TEMPO-mediated reaction, using sodium hypochlorite as primary oxidant and NaBr in buffered pH, so that the produced aldehyde moieties (hemiacetals) were trapped in situ by adding primary amines containing azide or alkyne-terminal groups. The structure of the reaction products, oxidized-HA and primary amines bonded to HA, was elucidated using 2D NMR spectroscopy. SEC-MALLS analysis of the modified substrates showed a negligible degradation of the polysaccharide using this procedure. Furthermore, azido- and alkynyl derivatives underwent cross-linking by click chemistry into hydrogels, which were characterized by NMR, FT-IR, swelling degree and mechanical properties. Possible application of the material as scaffold for tissue engineering was tested by seeding and proliferation of chondrocytes for up to 15 days.  相似文献   

12.
The preparation and characterization of natural polymer-based hydrogels that contain 50-nm diameter magnetite (i.e., FeO:Fe(2)O(3)) nanoparticles are described herein. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the efficiency of the polysaccharide-modifying process. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and compressive moduli demostrate that the presence of magnetite improves thermal and mechanical resistance. Transient diffusion of water in magnetic hydrogels was analyzed via boundary layer mass transfer across an expaning interface, and the degree of swelling of these polysaccharide hydrogels decreases in the presence of magnetite, with no variation in the binary diffusion mechanism. The absence of hysteresis loops and coercivity observed via magnetometry suggests that magnetic hydrogels are useful for remote-controlled drug release, as demonstrated by magnetic-field-induced release of curcumin. Experiments reveal that magnetic hydrogels with greater magnetic susceptibility have the potential to release larger concentrations of drugs from the hydrogel network.  相似文献   

13.
Temperature and pH-responsive hydrogels based on chitosan grafted with poly acrylic acid (PAAc), poly hydroxy propyl methacrylate (PHPMA), poly (vinyl alcohol) (PVA) and gelatin were prepared for controlled drug delivery. These stimuli-responsive hydrogels were synthesized by gamma irradiation technique. The degree of gelation was over 90% and increased as chitosan, AAc and PVA content increased, while the degree of gelation decrease with the increase of gelatin content. The equilibrium swelling studies of hydrogels prepared in various conditions were carried out in an aqueous solution, and the pH sensitivity in the range of 2–9 was investigated. An increase of swelling degree with an increase in the pH was noticed and showed the highest value at pH 9. Also antibiotic drug Oxttetracycline was loaded into the hydrogels and the release studies were carried out at different pH and temperature. The in vitro release profiles of the drug showed that, the release of the drug increased as the time, temperature and pH increased and reached to maximum after 48 h at pH 9. The prepared hydrogels were characterized by using SEM, FTIR, and DSC.  相似文献   

14.
Polymeric matrices of chitosan (CS), 2-hydroxyethyl starch (HES) and their blends prepared by solvent evaporation technique, have been tested as sustained release hydrogels of ropinirole drug. X-Ray diffraction (XRD), infrared spectroscopy (FT-IR) and viscometry measurements showed that the two polymers can form miscible blends. This miscibility is owed to formed hydrogen bonds taking place between the reactive groups of CS and HES and one glass transition is recorded in all blends. Neat polymers were used to prepare solid dispersion formulations with ropinirole drug. It was found that drug was released immediately within 15-30 min from HES while the release was slower from CS matrix. Completely different were the release rates from ropinirole with physical mixtures using neat polymers and their blends. Due to the different solubility and swelling behaviour of CS and HES the release rates showed a sustained profile from the blends containing high amounts of CS.  相似文献   

15.
Chitosan (CS) nanohydrogel networks were prepared by reaction with glyceroldiglycidylether (GDE) and poly(dimethylsiloxane) (PDMS), as crosslinking agents in an emulsion system. The nanogel content increased with increasing the amount of crosslinkers and reached to a maximum of 90% with GDE. The nanogels structure was characterized by FT-IR, AFM, DSC, and TGA. The average size for CS-GDE and CS-PDMS particles were 59nm and 180nm, respectively. The swelling behavior of nanohydrogels was observed to be dependent on pH, temperature, degree of crosslinking, and on the chemical structure of crosslinker. The equilibrium water content of CS-GDE nanohydrogels reached to a maximum of 600% at neutral pH, and decreased at high and low pH and low temperature. These nanohydrogels were tested for sodium diclofenac (SDF) loading and releasing efficiency. The covalent conjugation of bovine serum albumin (BSA) and magnetic Fe(3)O(4) nanoparticles on the hydrogels were found to hold a potential application in magnetically assisted bioseparation.  相似文献   

16.
Hydrogel dressings have significant advantages such as absorption of tissue exudate, maintenance of proper moist environment, and promotion of cell proliferation. However, facile preparation method and high-efficient antibacterial hydrogel dressings are still a great challenge. In this study, a facile approach to prepare antibacterial nanocomposite hydrogel dressing to accelerate healing was explored. The hydrogels consisted of quaternized chitosan and chemically cross-linked polyacrylamide, as well as silver nanoparticles (AgNPs) stabilized by chitosan. The synthesis of the hydrogels including the formation of AgNPs and polymerization of acrylamide was accomplished simultaneously under UV irradiation in 1 hour without adding initiator. The hydrogels showed favorable tensile strength of ∼100 kPa with elongation at break over 1000% and shear modulus of ∼104 Pa as well as suitable swelling ratio, which were appropriate for wound dressing. The combination of quaternized chitosan and AgNPs exhibited high-efficient and synergetic antibacterial performance with low cytotoxicity. In vivo animal experiments showed that the hydrogel can effectively prevent wound infection and promote wound healing. This study provides a facile method to produce antibacterial hydrogel wound dressing materials.  相似文献   

17.
G He  Z Wang  H Zheng  Y Yin  X Xiong  R Lin 《Carbohydrate polymers》2012,90(4):1614-1619
Aminoethyl chitins (AEC) with different amino contents were synthesized from chitin and 2-chlorethylamine hydrochloride, and the AEC hydrogels were prepared by crosslinking with glutaraldehyde. The microstructures, swelling behaviors and antibacterial activities of the hydrogels were investigated. The results of Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance ((1)H NMR) spectrum and scanning electron microscopy (SEM) showed that the hydrogels were prepared by forming the Schiff base from AEC and glutaraldehyde. The aminoethyl chitin hydrogels were sensitive to acidic environment. The swelling ratio changed with the amino content of AEC, declined with the increase of the crosslinking agent concentration and increased with the increase of the AEC concentration. In addition, the antibacterial results of the hydrogels against Staphylococcus aureus (S. aureus) indicated that the hydrogels had good antibacterial activities, and the antibacterial properties were affected by the amino content of AEC and the crosslinking agent concentration.  相似文献   

18.
In order to utilize the psyllium husk, a medicinally important natural polysaccharide, to develop the hydrogels meant for the drug delivery, we have prepared psyllium and polyacrylic acid based polymeric networks by radiation-induced crosslinked copolymerization. Polymeric networks (hydrogels) thus formed were characterized with SEMs, FTIR and swelling studies. Swelling behavior of the hydrogels was studied as a function of monomer concentration in the hydrogels and temperature, pH and [NaCl] of the swelling medium. This paper discusses the swelling kinetics of the hydrogels and release dynamics of anticancer model drug 5-fluorouracil from the hydrogels for the evaluation of swelling and drug release mechanisms. It has been observed from the release dynamics of drug that diffusion exponent ‘n’ have 0.7, 0.8 and 0.7 values and gel characteristics constant ‘k’ have 9.13 × 10−3, 6.22 × 10−3 and 9.01 × 10−3 values for the release of 5-fluorouracil, respectively, in distilled water, pH 2.2 buffer and pH 7.4 buffer. The values of the diffusion exponent show that the release of drug from drug-loaded hydrogels has occurred through Non-Fickian diffusion mechanism. It has also been observed from the swelling and release of drug in the different pH buffer that the polymer matrix is pH responsive and can be exploited for the delivery of anticancer drug to the colon.  相似文献   

19.
Thermo-sensitive semi-IPN hydrogels were prepared via in situ copolymerization of N-isopropylacrylamide (NIPAAm) with poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer in the presence of sodium alginate by UV irradiation technology. The effects of the sodium alginate content, temperature, and salt on the swelling behavior of the as-obtained hydrogels were studied. The results showed that the swelling ratio of the hydrogels increased with the increasing sodium alginate content at the same temperature, and decreased with the increase in temperature. The salt sensitivity of the semi-IPN hydrogels was dependent on the content of sodium alginate introduced in the hydrogels. The mechanical rheology of the hydrogels and in vitro release behavior of bovine serum albumin (BSA) in situ encapsulated within the hydrogels were also investigated. It was found that the introduction of sodium alginate with semi-IPN structure improved mechanical strength of the hydrogels and the cumulative release percentage of BSA from the hydrogels. Such double-sensitive semi-IPN hydrogel materials could be exploited as potential candidates for drug delivery carriers.  相似文献   

20.
The electrical and dielectric properties of Ba2+ and Ca2+ cross‐linked alginate hydrogel beads were studied by means of single‐particle electrorotation. The use of microstructured electrodes allowed the measurements to be performed over a wide range of medium conductivity from about 5 mS/m to 1 S/m. Within a conductivity range, the beads exhibited measurable electrorotation response at frequencies above 0.2 MHz with two well‐resolved co‐ and antifield peaks. With increasing medium conductivity, both peaks shifted toward higher frequency and their magnitudes decreased greatly. The results were analyzed using various dielectric models that consider the beads as homogeneous spheres with conductive loss and allow the complex rotational behavior of beads to be explained in terms of conductivity and permittivity of the hydrogel. The rotation spectra could be fitted very accurately by assuming (a) a linear relationship between the internal hydrogel conductivity and the medium conductivity, and (b) a broad internal dispersion of the hydrogel centered between 20 and 40 MHz. We attribute this dispersion to the relaxation of water bound to the polysaccharide matrix of the beads. The dielectric characterization of alginate hydrogels is of enormous interest for biotechnology and medicine, where alginate beads are widely used for immobilization of cells and enzymes, for drug delivery, and as microcarriers for cell cultivation. © 1999 John Wiley & Sons, Inc. Biopoly 50: 227–237, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号