共查询到20条相似文献,搜索用时 15 毫秒
1.
Yan Larson Jianyu Liu Payton D. Stevens Xin Li Jing Li B. Mark Evers Tianyan Gao 《The Journal of biological chemistry》2010,285(32):24987-24998
The phosphatidylinositol 3-kinase (PI3K)/AKT pathway plays important roles in regulating cell motility. TSC2, a downstream target of AKT, is a central player in negatively controlling cell proliferation and protein translation through suppressing the activity of mTOR (mammalian target of rapamycin). However, the function of TSC2 in regulating cell migration remains unclear. Here, we show that TSC2 plays a critical role in the control of cell spreading, polarity, and migration. TSC2-deficient fibroblast cells were impaired in their ability to spread and alter actin cytoskeleton upon stimulation with insulin-like growth factor-1. Using scratch-induced polarization assay, we demonstrate that TSC2(−/−) fibroblast cells polarized poorly toward the wound compared with wild-type cells. Similarly, knockdown of TSC2 expression in colon cancer cells resulted in a marked decrease in cell motility. Functionally, the activation of CDC42- and RAC1-GTPase was largely reduced in TSC2 knock-out fibroblast and TSC2 knockdown cancer cells. Furthermore, overexpression of an activating p110α mutant or short term rapamycin treatment rescued the cell polarization defect in TSC2(−/−) fibroblast cells. Concurrently, the activation of CDC42 and RAC1 increased. The defect in cell migration and CDC42 and RAC1 activation was reversed by reintroducing TSC2 back into TSC2(−/−) fibroblast cells. Taken together, we identified a novel role of TSC2 in controlling cell polarity and migration by regulating CDC42 and RAC1 activation. 相似文献
2.
Ju-Pi Li Yu-Ning Fu Yi-Rong Chen Tse-Hua Tan 《The Journal of biological chemistry》2010,285(8):5472-5478
JNK pathway-associated phosphatase (JKAP, also named DUSP22) is expressed in various tissues, indicating that JKAP may have an important biological function. We showed that JKAP localized in the actin filament-enriched region. Expression of JKAP reduced cell migration, whereas a JKAP mutant lacking catalytic activity promoted cell motility. JKAP efficiently removed tyrosine phosphorylation of several proteins. We have identified focal adhesion kinase (FAK) as a substrate of JKAP. Overexpression of JKAP, but not JKAP mutant lacking catalytic activity, decreased FAK phosphorylation at tyrosines 397, 576, and 577 in H1299 cells. Consistent with these results, decreasing JKAP expression by RNA interference promoted cell migration and Src-induced FAK phosphorylation. Taken together, this study identified a new role for JKAP in the modulation of FAK phosphorylation and cell motility. 相似文献
3.
Hee Jun Cho Yoo-Seok Hwang Kathleen Mood Yon Ju Ji Junghwa Lim Deborah K. Morrison Ira O. Daar 《The Journal of biological chemistry》2014,289(26):18556-18568
The Eph receptors and their membrane-bound ligands, ephrins, play important roles in various biological processes such as cell adhesion and movement. The transmembrane ephrinBs transduce reverse signaling in a tyrosine phosphorylation-dependent or -independent, as well as PDZ-dependent manner. Here, we show that ephrinB1 interacts with Connector Enhancer of KSR1 (CNK1) in an EphB receptor-independent manner. In cultured cells, cotransfection of ephrinB1 with CNK1 increases JNK phosphorylation. EphrinB1/CNK1-mediated JNK activation is reduced by overexpression of dominant-negative RhoA. Overexpression of CNK1 alone is sufficient for activation of RhoA; however, both ephrinB1 and CNK1 are required for JNK phosphorylation. Co-immunoprecipitation data showed that ephrinB1 and CNK1 act as scaffold proteins that connect RhoA and JNK signaling components, such as p115RhoGEF and MKK4. Furthermore, adhesion to fibronectin or active Src overexpression increases ephrinB1/CNK1 binding, whereas blocking Src activity by a pharmacological inhibitor decreases not only ephrinB1/CNK1 binding, but also JNK activation. EphrinB1 overexpression increases cell motility, however, CNK1 depletion by siRNA abrogates ephrinB1-mediated cell migration and JNK activation. Moreover, Rho kinase inhibitor or JNK inhibitor treatment suppresses ephrinB1-mediated cell migration. Taken together, our findings suggest that CNK1 is required for ephrinB1-induced JNK activation and cell migration. 相似文献
4.
Wilson LS Baillie GS Pritchard LM Umana B Terrin A Zaccolo M Houslay MD Maurice DH 《The Journal of biological chemistry》2011,286(18):16285-16296
Enzymes of the phosphodiesterase 3 (PDE3) and PDE4 families each regulate the activities of both protein kinases A (PKAs) and exchange proteins activated by cAMP (EPACs) in cells of the cardiovascular system. At present, the mechanisms that allow selected PDEs to individually regulate the activities of these two effectors are ill understood. The objective of this study was to determine how a specific PDE3 variant, namely PDE3B, interacts with and regulates EPAC1-based signaling in human arterial endothelial cells (HAECs). Using several biochemical approaches, we show that PDE3B and EPAC1 bind directly through protein-protein interactions. By knocking down PDE3B expression or by antagonizing EPAC1 binding with PDE3B, we show that PDE3B regulates cAMP binding by its tethered EPAC1. Interestingly, we also show that PDE3B binds directly to p84, a PI3Kγ regulatory subunit, and that this interaction allows PI3Kγ recruitment to the PDE3B-EPAC1 complex. Of potential cardiovascular importance, we demonstrate that PDE3B-tethered EPAC1 regulates HAEC PI3Kγ activity and that this allows dynamic cAMP-dependent regulation of HAEC adhesion, spreading, and tubule formation. We identify and molecularly characterize a PDE3B-based "signalosome" that integrates cAMP- and PI3Kγ-encoded signals and show how this signal integration regulates HAEC functions of importance in angiogenesis. 相似文献
5.
Lin CH Cheng HW Ma HP Wu CH Hong CY Chen BC 《The Journal of biological chemistry》2011,286(12):10483-10494
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells. 相似文献
6.
Emhonta Johnson Darcie D. Seachrist Carlos M. DeLeon-Rodriguez Kristen L. Lozada John Miedler Fadi W. Abdul-Karim Ruth A. Keri 《The Journal of biological chemistry》2010,285(38):29491-29501
Breast cancers that overexpress the receptor tyrosine kinase ErbB2/HER2/Neu result in poor patient outcome because of extensive metastatic progression. Herein, we delineate a molecular mechanism that may govern this malignant phenotype. ErbB2 induction of migration requires activation of the small GTPases Rac1 and Cdc42. The ability of ErbB2 to activate these small GTPases necessitated expression of p120 catenin, which is itself up-regulated by signaling through ErbB2 and the tyrosine kinase Src. Silencing p120 in ErbB2-dependent breast cancer cell lines dramatically inhibited migration and invasion as well as activation of Rac1 and Cdc42. In contrast, overexpression of constitutively active mutants of these GTPases reversed the effects of p120 silencing. Lastly, ectopic expression of p120 promoted migration and invasion and potentiated metastatic progression of a weakly metastatic, ErbB2-dependent breast cancer cell line. These results suggest that p120 acts as an obligate intermediate between ErbB2 and Rac1/Cdc42 to modulate the metastatic potential of breast cancer cells. 相似文献
7.
Vicky Chaar Sandrine Laurance Claudine Lapoumeroulie Sylvie Cochet Maria De Grandis Yves Colin Jacques Elion Caroline Le Van Kim Wassim El Nemer 《The Journal of biological chemistry》2014,289(16):11512-11521
Vaso-occlusive crises are the main acute complication in sickle cell disease. They are initiated by abnormal adhesion of circulating blood cells to vascular endothelium of the microcirculation. Several interactions involving an intricate network of adhesion molecules have been described between sickle red blood cells and the endothelial vascular wall. We have shown previously that young sickle reticulocytes adhere to resting endothelial cells through the interaction of α4β1 integrin with endothelial Lutheran/basal cell adhesion molecule (Lu/BCAM). In the present work, we investigated the functional impact of endothelial exposure to hydroxycarbamide (HC) on this interaction using transformed human bone marrow endothelial cells and primary human pulmonary microvascular endothelial cells. Adhesion of sickle reticulocytes to HC-treated endothelial cells was decreased despite the HC-derived increase of Lu/BCAM expression. This was associated with decreased phosphorylation of Lu/BCAM and up-regulation of the cAMP-specific phosphodiesterase 4A expression. Our study reveals a novel mechanism for HC in endothelial cells where it could modulate the function of membrane proteins through the regulation of phosphodiesterase expression and cAMP-dependent signaling pathways. 相似文献
8.
Abstract: Phosphatidylinositol (PI) 3-kinase is activated by a variety of agents, including various growth factors, and has been proposed to play a role in initiation of cell growth, proliferation, and differentiation. We here investigate the effect of various membrane lipids on PI 3-kinase immunopurified from human SH-SY5Y neuroblastoma cells. CDP-diacylglycerol (CDP-DAG) inhibited PI 3-kinase activity with an IC50 of 6 µ M . Phosphatidate (PA) was also inhibitory (IC50 = 38 µ M ) as was lysophosphatidate. Neither DAG nor any of the other phospholipids examined affected PI 3-kinase activity. The results offer the possibility that CDP-DAG or PA at critical membrane sites may exert functionally significant metabolic regulation at the point of convergence of the PI 3-kinase-directed and the PI 4-kinase-directed phosphoinositide signal transduction pathways. 相似文献
9.
T Fukushima Y Nakamura D Yamanaka T Shibano K Chida S Minami T Asano F Hakuno S Takahashi 《The Journal of biological chemistry》2012,287(35):29713-29721
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. 相似文献
10.
Jeanne M. Bristow Theresa A. Reno Minji Jo Steven L. Gonias Richard L. Klemke 《The Journal of biological chemistry》2013,288(1):123-131
Pseudopodium-enriched atypical kinase 1 (PEAK1) is a recently described tyrosine kinase that associates with the actin cytoskeleton and focal adhesion (FA) in migrating cells. PEAK1 is known to promote cell migration, but the responsible mechanisms remain unclear. Here, we show that PEAK1 controls FA assembly and disassembly in a dynamic pathway controlled by PEAK1 phosphorylation at Tyr-665. Knockdown of endogenous PEAK1 inhibits random cell migration. In PEAK1-deficient cells, FA lifetimes are decreased, FA assembly times are shortened, and FA disassembly times are extended. Phosphorylation of Tyr-665 in PEAK1 is essential for normal PEAK1 localization and its function in the regulation of FAs; however, constitutive phosphorylation of PEAK1 Tyr-665 is also disruptive of its function, indicating a requirement for precise spatiotemporal regulation of PEAK1. Src family kinases are required for normal PEAK1 localization and function. Finally, we provide evidence that PEAK1 promotes cancer cell invasion through Matrigel by a mechanism that requires dynamic regulation of Tyr-665 phosphorylation. 相似文献
11.
Masaaki Nakayama Tetsuyoshi Inoue Mariko Naito Koji Nakayama Naoya Ohara 《The Journal of biological chemistry》2015,290(8):5190-5202
Porphyromonas gingivalis is a major pathogen of periodontal diseases, including periodontitis. We have investigated the effect of P. gingivalis infection on the PI3K/Akt (protein kinase B) signaling pathway in gingival epithelial cells. Here, we found that live P. gingivalis, but not heat-killed P. gingivalis, reduced Akt phosphorylation at both Thr-308 and Ser-473, which implies a decrease in Akt activity. Actually, PI3K, which is upstream of Akt, was also inactivated by P. gingivalis. Furthermore, glycogen synthase kinase 3α/β, mammalian target of rapamycin, and Bad, which are downstream proteins in the PI3K/Akt cascade, were also dephosphorylated, a phenomenon consistent with Akt inactivation by P. gingivalis. However, these events did not require direct interaction between bacteria and host cells and were independent of P. gingivalis invasion into the cells. The use of gingipain-specific inhibitors and a gingipain-deficient P. gingivalis mutant KDP136 revealed that the gingipains and their protease activities were essential for the inactivation of PI3K and Akt. The associations between the PI3K regulatory subunit p85α and membrane proteins were disrupted by wild-type P. gingivalis. Moreover, PDK1 translocation to the plasma membrane was reduced by wild-type P. gingivalis, but not KDP136, indicating little production of phosphatidylinositol 3,4,5-triphosphate by PI3K. Therefore, it is likely that PI3K failed to transmit homeostatic extracellular stimuli to intracellular signaling pathways by gingipains. Taken together, our findings indicate that P. gingivalis attenuates the PI3K/Akt signaling pathway via the proteolytic effects of gingipains, resulting in the dysregulation of PI3K/Akt-dependent cellular functions and the destruction of epithelial barriers. 相似文献
12.
Erik R. Kline John Shupe Melissa Gilbert-Ross Wei Zhou Adam I. Marcus 《The Journal of biological chemistry》2013,288(24):17663-17674
Liver kinase β1 (LKB1, also known as STK11) is a serine/threonine kinase that has multiple cellular functions including the regulation of cell polarity and motility. Murine proteomic studies show that LKB1 loss causes aberrant adhesion signaling; however, the mechanistic underpinnings of this relationship are unknown. We show that cells stably depleted of LKB1 or its co-activator STRADα have increased phosphorylation of focal adhesion kinase (FAK) at Tyr397/Tyr861 and enhanced adhesion to fibronectin. LKB1 associates in a complex with FAK and LKB1 accumulation at the cellular leading edge is mutually excluded from regions of activated Tyr397-FAK. LKB1-compromised cells lack directional persistence compared with wild-type cells, but this is restored through subsequent pharmacological FAK inhibition or depletion, showing that cell directionality is mediated through LKB1-FAK signaling. Live cell confocal imaging reveals that LKB1-compromised cells lack normal FAK site maturation and turnover, suggesting that defects in adhesion and directional persistence are caused by aberrant adhesion dynamics. Furthermore, re-expression of full-length wild-type or the LKB1 N-terminal domain repressed FAK activity, whereas the kinase domain or C-terminal domain alone did not, indicating that FAK suppression is potentially regulated through the LKB1 N-terminal domain. Based upon these results, we conclude that LKB1 serves as a FAK repressor to stabilize focal adhesion sites, and when LKB1 function is compromised, aberrant FAK signaling ensues, resulting in rapid FAK site maturation and poor directional persistence. 相似文献
13.
Martin Nybo Andersen Katarzyna Krzystanek Frederic Petersen Sofia Hammami Bomholtz S?ren-Peter Olesen Hugues Abriel Thomas Jespersen Hanne Borger Rasmussen 《The Journal of biological chemistry》2013,288(52):36841-36854
Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells. 相似文献
14.
Chandana Koorella Jayakumar R. Nair Megan E. Murray Louise M. Carlson Stephanie K. Watkins Kelvin P. Lee 《The Journal of biological chemistry》2014,289(11):7747-7762
Dendritic cells (DC) play a critical role in modulating antigen-specific immune responses elicited by T cells via engagement of the prototypic T cell costimulatory receptor CD28 by the cognate ligands CD80/CD86, expressed on DC. Although CD28 signaling in T cell activation has been well characterized, it has only recently been shown that CD80/CD86, which have no demonstrated binding domains for signaling proteins in their cytoplasmic tails, nonetheless also transduce signals to the DC. Functionally, CD80/CD86 engagement results in DC production of the pro-inflammatory cytokine IL-6, which is necessary for full T cell activation. However, ligation of CD80/CD86 by CTLA4 also induces DC production of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO), which depletes local pools of the essential amino acid tryptophan, resulting in blockade of T cell activation. Despite the significant role of CD80/CD86 in immunological processes and the seemingly opposing roles they play by producing IL-6 and IDO upon their activation, how CD80/CD86 signal remains poorly understood. We have now found that cross-linking CD80/CD86 in human DC activates the PI3K/AKT pathway. This results in phosphorylation/inactivation of its downstream target, FOXO3A, and alleviates FOXO3A-mediated suppression of IL-6 expression. A second event downstream of AKT phosphorylation is activation of the canonical NF-κB pathway, which induces IL-6 expression. In addition to these downstream pathways, we unexpectedly found that CD80/CD86-induced PI3K signaling is regulated by previously unrecognized cross-talk with NOTCH1 signaling. This cross-talk is facilitated by NOTCH-mediated up-regulation of the expression of prolyl isomerase PIN1, which in turn increases enzyme activity of casein kinase II. Subsequently, phosphatase and tensin homolog (which suppresses PI3K activity) is inactivated via phosphorylation by casein kinase II. This results in full activation of PI3K signaling upon cross-linking CD80/CD86. Similar to IL-6, we have found that CD80/CD86-induced IDO production by DC at late time points is also dependent upon the PI3K → AKT → NF-κB pathway and requires cross-talk with NOTCH signaling. These data further suggest that the same signaling pathways downstream of DC CD80/CD86 cross-linking induce early IL-6 production to enhance T cell activation, followed by later IDO production to self-limit this activation. In addition to characterizing the pathways downstream of CD80/CD86 in IL-6 and IDO production, identification of a novel cross-talk between NOTCH1 and PI3K signaling may provide new insights in other biological processes where PI3K signaling plays a major role. 相似文献
15.
Zanou N Schakman O Louis P Ruegg UT Dietrich A Birnbaumer L Gailly P 《The Journal of biological chemistry》2012,287(18):14524-14534
We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1(-/-) and Trpc1(+/+) murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1(-/-) muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1(-/-) mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1(-/-) muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1(-/-) primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca(2+) or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca(2+) through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca(2+)-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration. 相似文献
16.
Ma C Wang N Detre C Wang G O'Keeffe M Terhorst C 《The Journal of biological chemistry》2012,287(22):18359-18365
Phagocytosis is a pivotal process by which macrophages eliminate microorganisms upon recognition by pathogen sensors. Surprisingly, the self-ligand cell surface receptor Slamf1 functions not only as a co-stimulatory molecule but also as a microbial sensor of several Gram-negative bacteria. Upon entering the phagosome of macrophages Slamf1 induces production of phosphatidylinositol 3-phosphate, which positively regulates the activity of the NOX2 enzyme and phagolysosomal maturation. Here, we report that in Escherichia coli-containing phagosomes of mouse macrophages, Slamf1 interacts with the class III PI3K Vps34 in a complex with Beclin-1 and UVRAG. Upon phagocytosis of bacteria the NOX2 activity was reduced in macrophages isolated from Beclin-1(+/-) mice compared with wild-type mice. This Slamf1/Beclin-1/Vps34/UVRAG protein complex is formed in intracellular membrane compartments as it is found without inducing phagocytosis in macrophages, human chronic lymphocytic leukemia cells, and transfectant HEK293 cells. Elimination of its cytoplasmic tail abolished the interaction of Slamf1 with the complex, but deletion or mutation of the two ITAM motifs did not. Both the BD and CCD domains of Beclin-1 were required for efficient binding to Slamf1. Because Slamf1 did not interact with Atg14L or Rubicon, which can also form a complex with Vps34 and Beclin-1, we conclude that Slamf1 recruits a subset of Vps34-associated proteins, which is involved in membrane fusion and NOX2 regulation. 相似文献
17.
Rosie Hart Paula Stanley Probir Chakravarty Nancy Hogg 《The Journal of biological chemistry》2013,288(21):14852-14862
The protein kindlin 3 is mutated in the leukocyte adhesion deficiency III (LAD-III) disorder, leading to widespread infection due to the failure of leukocytes to migrate into infected tissue sites. To gain understanding of how kindlin 3 controls leukocyte function, we have focused on its pleckstrin homology (PH) domain and find that deletion of this domain eliminates the ability of kindlin 3 to participate in adhesion and migration of B cells mediated by the leukocyte integrin lymphocyte function-associated antigen 1 (LFA-1). PH domains are often involved in membrane localization of proteins through binding to phosphoinositides. We show that the kindlin 3 PH domain has binding affinity for phosphoinositide PI(3,4,5)P3 over PI(4,5)P2. It has a major role in membrane association of kindlin 3 that is enhanced by the binding of LFA-1 to intercellular adhesion molecule 1 (ICAM-1). A splice variant, kindlin 3-IPRR, has a four-residue insert in the PH domain at a critical site that influences phosphoinositide binding by enhancing binding to PI(4,5)P2 as well as by binding to PI(3,4,5)P3. However kindlin 3-IPRR is unable to restore the ability of LAD-III B cells to adhere to and migrate on LFA-1 ligand ICAM-1, potentially by altering the dynamics or PI specificity of binding to the membrane. Thus, the correct functioning of the kindlin 3 PH domain is central to the role that kindlin 3 performs in guiding lymphocyte adhesion and motility behavior, which in turn is required for a successful immune response. 相似文献
18.
目的:视网膜脱离发生机制尚不明确,本文旨在研究机械应力牵拉后视网膜色素上皮细胞上清中IL-8分泌量的变化以及人其对RPE细胞PI3K/AKT通路变化影响。方法:培养人RPE细胞,应用Flex-cell细胞应力加载系统牵拉人RPE细胞不同时间(0h、1 h、3 h、6 h、9 h)建立不同牵拉时间的模型。分别标记为对照组、牵拉1 h组、牵拉3 h组、牵拉6 h组、牵拉9 h组。随后用ELISA方法检测人RPE细胞不同实验组上清中IL-8分泌量的变化。细胞免疫荧光和Western blot方法观察PI3K、PPI3K、T-AKT、P-AKT的表达。结果:随着牵拉时间的延长,ELISA方法检测人RPE细胞不同实验组上清中IL-8分泌量逐渐增加[924.79±5.92 pg/m L、947.73±5.34 pg/m L、974.53±5.74 pg/m L、979.57±1.12 pg/m L、1019.22±4.25 pg/m L],差异有统计学意义(F=166,p0.01),各牵拉组与对照组分别对比,差异有统计学意义(P0.05)。细胞中P-AKT蛋白表达增加[0.61±0.02、0.97±0.05、0.99±0.04、1.21±0.11、1.20±0.07],差异有统计学意义(F=41.24,p0.01),各牵拉组与对照组分别对比,差异有统计学意义(P0.05),AKT表达未见明显变化。结论:机械应力牵拉人RPE细胞时,细胞上清中IL-8分泌量逐渐增加同时RPE细胞内PI3K/AKT通路明显激活,并与牵拉时间有关,为探究EMT原因和对防治PVR提供了理论基础。 相似文献
19.
目的:验证白藜芦醇是否可以抑制胃癌SGC-7901细胞增殖和迁移及其信号通路。方法:用不同浓度白藜芦醇干预SGC-7901细胞,再用LY-294002和IGF-1分别用来抑制和激活Pi3K/AKT通路。MTT法测细胞增殖,划痕试验和Transwell试验测细胞迁移,Western blot检测细胞迁移相关蛋白(MMP-2、MMP-9)、细胞迁移相关蛋白(P21、P27)、以及AKT、p-AKT的表达情况;结果:相比于对照组,白藜芦醇组胃癌细胞增殖和迁移减弱(P=0.001),p-AKT表达减少(P0.001);LY-294002可以抑制p-AKT的表达(P=0.004),和白藜芦醇一样可以抑制胃癌细胞的增殖和迁移;IGF-1可以显著增加p-AKT的表达(P0.001),可以逆转白藜芦醇对胃癌细胞增殖和迁移的抑制作用。结论:白藜芦醇通过抑制Pi3K/AKT信号通路抑制胃癌细胞增殖和迁移。 相似文献
20.
Xiaodong Chen Jahan Ali Khajeh Jeong Ho Ju Yogesh K. Gupta Christopher B. Stanley Changwoo Do William T. Heller Aneel K. Aggarwal David J. E. Callaway Zimei Bu 《The Journal of biological chemistry》2015,290(10):6639-6652
The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. 相似文献