首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Albumin is an abundant blood protein that acts as a transporter of a plethora of small molecules like fatty acids, hormones, toxins, and drugs. In addition, it has an unusual long serum half-life in humans of nearly 3 weeks, which is attributed to its interaction with the neonatal Fc receptor (FcRn). FcRn protects albumin from intracellular degradation via a pH-dependent cellular recycling mechanism. To understand how FcRn impacts the role of albumin as a distributor, it is of importance to unravel the structural mechanism that determines pH-dependent binding. Here, we show that although the C-terminal domain III (DIII) of human serum albumin (HSA) contains the principal binding site, the N-terminal domain I (DI) is important for optimal FcRn binding. Specifically, structural inspection of human FcRn (hFcRn) in complex with HSA revealed that two exposed loops of DI were in proximity with the receptor. To investigate to what extent these contacts affected hFcRn binding, we targeted selected amino acid residues of the loops by mutagenesis. Screening by in vitro interaction assays revealed that several of the engineered HSA variants showed decreased binding to hFcRn, which was also the case for two missense variants with mutations within these loops. In addition, four of the variants showed improved binding. Our findings demonstrate that both DI and DIII are required for optimal binding to FcRn, which has implications for our understanding of the FcRn-albumin relationship and how albumin acts as a distributor. Such knowledge may inspire development of novel HSA-based diagnostics and therapeutics.  相似文献   

2.
The neonatal Fc receptor, FcRn, is responsible for the long half-life of IgG molecules in vivo and is a potential therapeutic target for the treatment of autoimmune diseases. A family of peptides comprising the consensus motif GHFGGXY, where X is preferably a hydrophobic amino acid, was shown previously to inhibit the human IgG:human FcRn protein-protein interaction (Mezo, A. R., McDonnell, K. A., Tan Hehir, C. A., Low, S. C., Palombella, V. J., Stattel, J. M., Kamphaus, G. D., Fraley, C., Zhang, Y., Dumont, J. A., and Bitonti, A. J. (2008) Proc. Natl. Acad. Sci. U.S.A., 105, 2337–2342). Herein, the x-ray crystal structure of a representative monomeric peptide in complex with human FcRn was solved to 2.6 Å resolution. The structure shows that the peptide binds to human FcRn at the same general binding site as does the Fc domain of IgG. The data correlate well with structure-activity relationship data relating to how the peptide family binds to human FcRn. In addition, the x-ray crystal structure of a representative dimeric peptide in complex with human FcRn shows how the bivalent ligand can bridge two FcRn molecules, which may be relevant to the mechanism by which the dimeric peptides inhibit FcRn and increase IgG catabolism in vivo. Modeling of the peptide:FcRn structure as compared with available structural data on Fc and FcRn suggest that the His-6 and Phe-7 (peptide) partially mimic the interaction of His-310 and Ile-253 (Fc) in binding to FcRn, but using a different backbone topology.  相似文献   

3.
Fcγ receptors (FcγRs) play critical roles in humoral and cellular immune responses through interactions with the Fc region of immunoglobulin G (IgG). Among them, FcγRI is the only high affinity receptor for IgG and thus is a potential target for immunotherapy. Here we report the first crystal structure of an FcγRI with all three extracellular Ig-like domains (designated as D1, D2, and D3). The structure shows that, first, FcγRI has an acute D1-D2 hinge angle similar to that of FcεRI but much smaller than those observed in the low affinity Fcγ receptors. Second, the D3 domain of FcγRI is positioned away from the putative IgG binding site on the receptor and is thus unlikely to make direct contacts with Fc. Third, the replacement of FcγRIII FG-loop ((171)LVGSKNV(177)) with that of FcγRI ((171)MGKHRY(176)) resulted in a 15-fold increase in IgG(1) binding affinity, whereas a valine insertion in the FcγRI FG-loop ((171)MVGKHRY(177)) abolished the affinity enhancement. Thus, the FcγRI FG-loop with its conserved one-residue deletion is critical to the high affinity IgG binding. The structural results support FcγRI binding to IgG in a similar mode as its low affinity counterparts. Taken together, our study suggests a molecular mechanism for the high affinity IgG recognition by FcγRI and provides a structural basis for understanding its physiological function and its therapeutic implication in treating autoimmune diseases.  相似文献   

4.
Albumin is the most abundant protein in blood and plays a pivotal role as a multitransporter of a wide range of molecules such as fatty acids, metabolites, hormones, and toxins. In addition, it binds a variety of drugs. Its role as distributor is supported by its extraordinary serum half-life of 3 weeks. This is related to its size and binding to the cellular receptor FcRn, which rescues albumin from intracellular degradation. Furthermore, the long half-life has fostered a great and increasing interest in utilization of albumin as a carrier of protein therapeutics and chemical drugs. However, to fully understand how FcRn acts as a regulator of albumin homeostasis and to take advantage of the FcRn-albumin interaction in drug design, the interaction interface needs to be dissected. Here, we used a panel of monoclonal antibodies directed towards human FcRn in combination with site-directed mutagenesis and structural modeling to unmask the binding sites for albumin blocking antibodies and albumin on the receptor, which revealed that the interaction is not only strictly pH-dependent, but predominantly hydrophobic in nature. Specifically, we provide mechanistic evidence for a crucial role of a cluster of conserved tryptophan residues that expose a pH-sensitive loop of FcRn, and identify structural differences in proximity to these hot spot residues that explain divergent cross-species binding properties of FcRn. Our findings expand our knowledge of how FcRn is controlling albumin homeostasis at a molecular level, which will guide design and engineering of novel albumin variants with altered transport properties.  相似文献   

5.
Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and FcRn affinity chromatography. The combination of experimental results demonstrates that differences between an IgG and its cognate YTE mutant vary with their pH-sensitive dynamics prior to binding FcRn. The conformational dynamics of these two molecules are nearly indistinguishable upon binding FcRn. We present evidence that pH-induced destabilization in the CH2/3 domain interface of IgG increases binding affinity by breaking intramolecular H-bonds and increases side-chain adaptability in sites that form intermolecular contacts with FcRn. Our results provide new insights into the mechanism of pH-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.  相似文献   

6.
The immunoglobulin (Ig) constant CH2 domain is critical for antibody effector functions. Isolated CH2 domains are promising scaffolds for construction of libraries containing diverse binders that could also confer some effector functions. We have shown previously that an isolated human CH2 domain is relatively unstable to thermally induced unfolding, but its stability can be improved by engineering an additional disulfide bond (Gong, R., Vu, B. K., Feng, Y., Prieto, D. A., Dyba, M. A., Walsh, J. D., Prabakaran, P., Veenstra, T. D., Tarasov, S. G., Ishima, R., and Dimitrov, D. S. (2009) J. Biol. Chem. 284, 14203-14210). We have hypothesized that the stability of this engineered antibody domain could be further increased by removing unstructured residues. To test our hypothesis, we removed the seven N-terminal residues that are in a random coil as suggested by our analysis of the isolated CH2 crystal structure and NMR data. The resulting shortened engineered CH2 (m01s) was highly soluble, monomeric, and remarkably stable, with a melting temperature (T(m)) of 82.6 °C, which is about 10 and 30 °C higher than those of the original stabilized CH2 (m01) and CH2, respectively. m01s and m01 were more resistant to protease digestion than CH2. A newly identified anti-CH2 antibody that recognizes a conformational epitope bound to m01s significantly better (>10-fold higher affinity) than to CH2 and slightly better than to m01. m01s bound to a recombinant soluble human neonatal Fc receptor at pH 6.0 more strongly than CH2. These data suggest that shortening the m01 N terminus significantly increases stability without disrupting its conformation and that our approach for increasing stability and decreasing size by removing unstructured regions may also apply to other proteins.  相似文献   

7.
The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the AT1 receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. Here, we investigated the role of the first and fourth transmembrane domains (TMDs) in the formation of the binding pocket of the human AT1 receptor using the substituted-cysteine accessibility method. Each residue within the Phe-28(1.32)–Ile-53(1.57) fragment of TMD1 and Leu-143(4.40)–Phe-170(4.67) fragment of TMD4 was mutated, one at a time, to a cysteine. The resulting mutant receptors were expressed in COS-7 cells, which were subsequently treated with the charged sulfhydryl-specific alkylating agent methanethiosulfonate ethylammonium (MTSEA). This treatment led to a significant reduction in the binding affinity of TMD1 mutants M30C(1.34)-AT1 and T33C(1.37)-AT1 and TMD4 mutant V169C(4.66)-AT1. Although this reduction in binding of the TMD1 mutants was maintained when examined in a constitutively active receptor (N111G-AT1) background, we found that V169C(4.66)-AT1 remained unaffected when treated with MTSEA compared with untreated in this context. Moreover, the complete loss of binding observed for R167C(4.64)-AT1 was restored upon treatment with MTSEA. Our results suggest that the extracellular portion of TMD1, particularly residues Met-30(1.34) and Thr-33(1.37), as well as residues Arg-167(4.64) and Val-169(4.66) at the junction of TMD4 and the second extracellular loop, are important binding determinants within the AT1 receptor binding pocket but that these TMDs undergo very little movement, if at all, during the activation process.  相似文献   

8.
Factor VIII (FVIII) plays a critical role in blood coagulation by forming the tenase complex with factor IXa and calcium ions on a membrane surface containing negatively charged phospholipids. The tenase complex activates factor X during blood coagulation. The carboxyl-terminal C2 domain of FVIII is the main membrane-binding and von Willebrand factor-binding region of the protein. Mutations of FVIII cause hemophilia A, whereas elevation of FVIII activity is a risk factor for thromboembolic diseases. The C2 domain-membrane interaction has been proposed as a target of intervention for regulation of blood coagulation. A number of molecules that interrupt FVIII or factor V (FV) binding to cell membranes have been identified through high throughput screening or structure-based design. We report crystal structures of the FVIII C2 domain under three new crystallization conditions, and a high resolution (1.15 Å) crystal structure of the FVIII C2 domain bound to a small molecular inhibitor. The latter structure shows that the inhibitor binds to the surface of an exposed β-strand of the C2 domain, Trp2313-His2315. This result indicates that the Trp2313-His2315 segment is an important constituent of the membrane-binding motif and provides a model to understand the molecular mechanism of the C2 domain membrane interaction.  相似文献   

9.
The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and demonstrates that the antidepressant binding site overlaps with the substrate binding site.  相似文献   

10.
G protein-coupled receptors (GPCRs) represent the largest class of integral membrane protein receptors in the human genome. Despite the great diversity of ligands that activate these GPCRs, they interact with a relatively small number of intracellular proteins to induce profound physiological change. Both heterotrimeric G proteins and GPCR kinases are well known for their ability to specifically recognize GPCRs in their active state. Recent structural studies now suggest that heterotrimeric G proteins and GPCR kinases identify activated receptors via a common molecular mechanism despite having completely different folds.  相似文献   

11.
Thrombopoietin (TPO) and its receptor (Mpl) have long been associated with megakaryocyte proliferation, differentiation, and platelet formation. However, studies have also shown that the extracellular domain of Mpl (Mpl-EC) interacts with human (h) NUDC, a protein previously characterized as a human homolog of a fungal nuclear migration protein. This study was undertaken to further delineate the putative binding domain on the Mpl receptor. Using the yeast two-hybrid system assay and co-immunoprecipitation, we identified that within the Mpl-EC domain 1 (Mpl-EC-D1), amino acids 102–251 were strongly involved in ligand binding. We subsequently expressed five subdomains within this region with T7 phage display. Enzyme-linked immunosorbent binding assays identified a short stretch of peptide located between residues 206 and 251 as the minimum binding domain for both TPO and hNUDC. A series of sequential Ala replacement mutations in the region were subsequently used to identify the specific residues most involved in ligand binding. Our results point to two hydrophobic residues, Leu228 and Leu230, as having substantial effects on hNUDC binding. For TPO binding, mutations in residues Asp235 and Leu239 had the largest effect on binding efficacy. In addition, deletion of the conservative motif WGSWS reduced binding capacity for hNUDC but not for TPO. These separate binding sites on the Mpl receptor for TPO and hNUDC raise interesting implications for the cytokine-receptor interactions.  相似文献   

12.
13.
G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.  相似文献   

14.
The G protein-coupled receptor P2Y2 nucleotide receptor (P2Y2R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y2Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y2R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-α protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y2R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y2R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号