首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CIN85 is an adaptor protein linking the ubiquitin ligase Cbl and clathrin-binding proteins in clathrin-mediated receptor endocytosis. The SH3 domains of CIN85 bind to a proline-rich region of Cbl. Here we show that all three SH3 domains of CIN85 bind to ubiquitin. We also present a data-based structural model of the CIN85 SH3-C domain in complex with ubiquitin. In this complex, ubiquitin binds to the canonical interaction surface of the SH3 domain for proline-rich ligands and mimics the PPII helix, and we provide evidence that ubiquitin competes with these ligands for binding. We demonstrate that disruption of ubiquitin binding results in constitutive ubiquitination of CIN85 and an increased level of ubiquitination of EGFR in the absence of EGF stimulation. These results suggest that competition between Cbl and ubiquitin binding to CIN85 regulates Cbl function and EGFR endocytosis.  相似文献   

2.
In the present study we have investigated a possible role for the proline-rich SH2 domain protein Shb as a regulator of expression or activity of certain SH3 domain proteins and MAP kinase. The expression of the Shb binding proteins Eps8, Src, and p85 PI3-kinase, PI3-kinase activity, and MAP kinase activation were assessed in wild-type NIH3T3 cells and in NIH3T3 cells overexpressing the Shb cDNA. In addition, the expression of the SH3 domain STAT1 proteins was assessed in wild-type and Shb overexpressing cells. The Eps8 protein content and Eps8 mRNA steady-state levels were downregulated, whereas the protein contents of Src and p85 PI3-kinase were unaffected by Shb overexpression. There was, however, an increased basal PI3-kinase activity in Shb transfected cells after a 3-h serum starvation. Increased steady-state levels of STAT1 mRNA were accompanied by an increased STAT1 protein content in Shb overexpressing cells. Shb overexpression was not associated with an altered activation of p44 or p42 MAP kinases in response to PDGF stimulation. The data presented in this study suggest novel functions for the adaptor protein Shb regulating the expression of certain signal-transducing SH3 domain proteins and modulating PI3-kinase activity.  相似文献   

3.
E3 ubiquitin ligase Cbl-b plays a crucial role in T cell activation and tolerance induction. However, the molecular mechanism by which Cbl-b inhibits T cell activation remains unclear. Here, we report that Cbl-b does not inhibit PI3K but rather suppresses TCR/CD28-induced inactivation of Pten. The elevated Akt activity in Cbl-b(-/-) T cells is therefore due to heightened Pten inactivation. Suppression of Pten inactivation in T cells by Cbl-b is achieved by impeding the association of Pten with Nedd4, which targets Pten K13 for K63-linked polyubiquitination. Consistent with this finding, introducing Nedd4 deficiency into Cbl-b(-/-) mice abrogates hyper-T cell responses caused by the loss of Cbl-b. Hence, our data demonstrate that Cbl-b inhibits T cell activation by suppressing Pten inactivation independently of its ubiquitin ligase activity.  相似文献   

4.
The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling mechanism.  相似文献   

5.
The adapter 3BP2 is involved in leukocyte signaling downstream Src/Syk-kinases coupled immunoreceptors. Here, we show that 3BP2 directly interacts with the endocytic scaffold protein CIN85 and the actin-binding protein HIP-55. 3BP2 co-localized with CIN85 and HIP-55 in T cell rafts and at the T cell/APC synapse, an active zone of receptors and proteins recycling. A binding region of CIN85 SH3 domains on 3BP2 was mapped to a PVPTPR motif in the first proline-rich region of 3BP2, whereas the C-terminal SH3 domain of HIP-55 bound a more distal proline-rich domain of 3BP2. Together, our data suggest an unexpected role of 3BP2 in endocytic and cytoskeletal regulation through its interaction with CIN85 and HIP-55.  相似文献   

6.
T-cell receptor (TCR) cross-linking increases tyrosine phosphorylation of multiple proteins, only a few of which have been identified. One of the most rapidly tyrosine-phosphorylated polypeptides is the 120-kDa product of the proto-oncogene c-cbl, a cytosolic and cytoskeletal protein containing multiple proline-rich motifs that are potential binding sites for proteins containing Src homology 3 (SH3) domains. We report here that in cultured Jurkat T cells, Cbl is coprecipitated with antibody against the adapter protein Grb2. Upon activation of Jurkat T cells via the TCR-CD3 complex, we find that high-affinity binding of Cbl requires the N-terminal SH3 domain of GST-Grb2 fusion protein but after cross-linking of the TCR-CD3 and CD4 receptors, Cbl binds equally to its SH2 domain. Grb2 antisera also precipitated p85 from serum-starved cells, while TCR activation increased p85 and tyrosine-phosphorylated Cbl but not Cbl protein in Grb2 immunocomplexes. Phosphatidylinositol (PI) 3-kinase activity was immunoprecipitated from serum-starved cells with Cbl and to a lesser extent with Grb2 antisera, and TCR cross-linking increased this activity severalfold. The PI 3-kinase activity associated with Cbl amounted to 5 to 10% of the total cellular activity that could be precipitated by p85 antisera. The Ras exchange factor Son-of-sevenless 1 (Sos-1) was not found in anti-Cbl immunoprecipitates from activated cells, and Cbl was not detectable in anti-Sos-1 precipitates, supporting the likelihood that Sos-Grb2 and Cbl-Grb2 are present as distinct complexes. Taken together, these data suggest that Cbl function in Jurkat T cells involves its constitutive association with Grb2 and its recruitment of PI 3-kinase in response to TCR activation.  相似文献   

7.
E3 ubiquitin ligases have been placed among the essential molecules involved in the regulation of T cell functions and T cell tolerance. However, it has never been experimentally proven in vivo whether these functions indeed depend on the catalytic E3 ligase activity. The Casitas B-cell lymphoma (Cbl) family protein Cbl-b was the first E3 ubiquitin ligase directly implicated in the activation and tolerance of the peripheral T cell. In this study, we report that selective genetic inactivation of Cbl-b E3 ligase activity phenocopies the T cell responses observed when total Cbl-b is ablated, resulting in T cell hyperactivation, spontaneous autoimmunity, and impaired induction of T cell anergy in vivo. Moreover, mice carrying a Cbl-b E3 ligase-defective mutation spontaneously reject tumor cells that express human papilloma virus Ags. These data demonstrate for the first time, to our knowledge, that the catalytic function of an E3 ligase, Cbl-b, is essential for negative regulation of T cells in vivo. Thus, modulation of the E3 ligase activity of Cbl-b might be a novel modality to control T cell immunity in vaccination, cancer biology, or autoimmunity.  相似文献   

8.
It has previously been shown that E3 ubiquitin ligase Casitas B-lineage lymphoma-b (Cbl-b) negatively regulates T-cell activation, but the molecular mechanism(s) underlying this inhibition is not completely defined. In this study, we report that the loss of Cbl-b selectively results in aberrant activation of NF-kappaB upon T-cell antigen receptor (TCR) ligation, which is mediated by phosphatidylinositol 3-kinase (PI3-K)/Akt and protein kinase C-theta (PKC-theta). TCR-induced hyperactivation of Akt in the absence of Cbl-b may potentiate the formation of caspase recruitment domain-containing membrane-associated guanylate kinase protein 1 (CARMA1)-B-cell lymphoma/leukemia 10 (Bcl10)-mucosa-associated lymphatic tissue 1(MALT1) (CBM) complex, which appears to be independent of PKC-theta. Cbl-b associates with PKC-theta upon TCR stimulation and regulates TCR-induced PKC-theta activation via Vav-1, which couples PKC-theta to PI3-K and allows it to be phosphorylated. PKC-theta then couples IkappaB kinases (IKKs) to the CBM complex, resulting in the activation of the IKK complex. Therefore, our data provide the first evidence to demonstrate that the down-regulation of TCR-induced NF-kappaB activation by Cbl-b is mediated coordinately by both Akt-dependent and PKC-theta-dependent signaling pathways in primary T cells.  相似文献   

9.
Phosphoinositide (PI) 3-kinases are required for the acute regulation of the cytoskeleton by growth factors. We have shown previously that in the MTLn3 rat adenocarcinoma cells line, the p85/p110alpha PI 3-kinase is required for epidermal growth factor (EGF)-stimulated lamellipod extension and formation of new actin barbed ends at the leading edge of the cell. We have now examined the role of the p85alpha regulatory subunit in greater detail. Microinjection of recombinant p85alpha into MTLn3 cells blocked both EGF-stimulated mitogenic signaling and lamellipod extension. In contrast, a truncated p85(1-333), which lacks the SH2 and iSH2 domains and does not bind p110, had no effect on EGF-stimulated mitogenesis but still blocked EGF-stimulated lamellipod extension. Additional deletional analysis showed that the SH3 domain was not required for inhibition of lamellipod extension, as a construct containing only the proline-rich and breakpoint cluster region (BCR) homology domains was sufficient for inhibition. Although the BCR domain of p85 binds Rac, the effects of the p85 constructs were not because of a general inhibition of Rac signaling, because sorbitol-induced JNK activation in MTLn3 cells was not inhibited. These data show that the proline-rich and BCR homology domains of p85 are involved in the coupling of p85/p110 PI 3-kinases to regulation of the actin cytoskeleton. These data provide evidence of a distinct cellular function for the N-terminal domains of p85.  相似文献   

10.
The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain and the first proline-rich motif bound each other, and variants of p85 containing the SH3 and BH domains and the first proline-rich motif were dimeric. Analysis of the apparent molecular mass of the deletion mutants indicated that each of these domains contributed residues to the dimerization interface, and competition experiments revealed that there were intermolecular SH3 domain-proline-rich motif interactions and BH-BH domain interactions mediating dimerization of p85alpha both in vitro and in vivo. Binding of SH2 domain ligands did not affect the dimeric state of p85alpha. Recently, roles for the p85 subunit have been postulated that do not involve the catalytic subunit, and if p85 exists on its own we propose that it would be dimeric.  相似文献   

11.
The Crk-associated substrate, p130(CAS), has been implicated in the regulation of the actin cytoskeleton following ligation of cell integrins with the extracellular matrix. Integrin-mediated cell adhesion involves p130(CAS) association with focal adhesion kinase (p125(FAK)). Internalization/cell entry of type 2 and type 5 adenoviruses (Ad) is also mediated by alpha(v) integrins. However, expression of dominant negative forms of p125(FAK) does not alter virus entry, and Ad entry occurs normally in p125(FAK)-deficient fibroblasts. We now provide evidence that Ad internalization, a process which is mediated by alpha(v) integrins, also requires p130(CAS) and phosphatidylinositol-3-OH kinase (PI 3-kinase). Ad induces p130(CAS) phosphorylation and inhibition of p130(CAS) phosphorylation by tyrphostin and genistein, or expression of the substrate domain deleted p130(CAS) blocks Ad internalization. p130(CAS) was also found to associate with the p85 subunit of PI 3-kinase through its proline-rich domain during virus internalization and expression of p130(CAS) containing a deleted proline-rich domain (PRD) inhibited adenovirus cell entry. We showed further that the RPLPSPP motif in the proline-rich region of p130(CAS) interacts with the SH3 domain of p85/PI 3-kinase. These studies reveal the molecular basis by which p130(CAS) coordinates the signaling pathways involved in integrin-mediated Ad endocytosis.  相似文献   

12.
Cellular organization of the cytoskeleton, assembly of intracellular signaling complexes and movement of membrane receptors into supramolecular activation complexes (SMACs) are crucial prerequisites for lymphocyte activation and function. Full T-cell activation requires costimulatory signals in addition to antigen-mediated signals. Costimulatory signals facilitate T-cell activation by inducing SMAC formation, resulting in sustained signal transduction, cell-cycle progression and cytokine production. The guanine nucleotide exchange factor Vav1 and the Wiscott-Aldrich syndrome protein (WASP) regulate the actin cytoskeleton in T cells and also regulate SMAC formation. In mice lacking the E3 ubiquitin ligase Cbl-b, the Vav-WASP signaling pathway is active in the absence of costimulation resulting in deregulated cytoskeletal reorganization, enhanced priming and expansion of autoreactive T cells, and the development of autoimmunity. This review discusses the role of Cbl-b, Vav and WASP in the regulation of SMAC formation and the implications for the maintenance of tolerance and the development of autoimmunity.  相似文献   

13.
Phosphatidylinositol (PI) 3-kinase is a heterodimer consisting of an 85-kDa subunit (p85) and 110-kDa subunit (p110). The 85-kDa noncatalytic subunit, which contains two Src homology 2 (SH2) domains, one SH3 domain, and a domain homologous to the carboxy terminus of the breakpoint cluster region gene product, is known to mediate the association of the PI 3-kinase complex with activated growth factor receptors. We previously demonstrated that the C-terminal SH2 domain of p85 is responsible for the interaction of PI 3-kinase with phosphorylated platelet-derived growth factor receptor. To define the region in p85 that directs the complex formation with the PI 3-kinase catalytic subunit, a series of truncated p85 mutants was analyzed for association with p110 in vivo. We found that a fragment of p85 containing the region between the two SH2 domains was sufficient to promote the interaction with p110 in vivo. The complex between the fragment of p85 and p110 had PI 3-kinase activity that was comparable in magnitude to the activity of p110 associated with full-length p85. The binding with p110 was abolished when this domain in p85 was disrupted. These results identify a novel structural and functional element that is responsible for localizing the catalytic subunit of PI 3-kinase.  相似文献   

14.
Insulin-like growth factor-I (IGF-I) stimulates the production of 3-inositides and markedly increases the phosphatidylinositol 3-kinase activity that is immunoprecipitated by anti-phosphotyrosine antibodies, a portion of which is also associated with the IGF-I receptor. In this study, recombinant p85, the regulatory subunit of phosphatidylinositol 3-kinase, and fusion proteins containing various subdomains were used to investigate the association of p85 with the IGF-I receptor and to demonstrate that p85 is a direct in vitro substrate of the IGF-I receptor kinase. Solubilized IGF-I receptor was immobilized on antireceptor antibody-agarose beads. Following in vitro receptor phosphorylation and incubation with cell lysate, immobilized receptor became associated with phosphatidylinositol 3-kinase activity and with protein bands with molecular masses of 85 and 110 kDa, which correspond to the known molecular masses of the subunits of phosphatidylinositol 3-kinase. These associations were inhibited by the addition of recombinant intact p85 or SH2-containing fusion proteins, but not by fusion proteins containing its SH3 domain or breakpoint cluster homology region. A fusion protein containing the SH2 domains of Ras GTPase-activating protein also inhibited the association of phosphatidylinositol 3-kinase activity with immobilized IGF-I receptor, although less effectively than p85, whereas a similar construct containing the SH2 domain of pp60src was without effect. When immobilized phosphorylated IGF-I receptor was incubated with intact p85 or the SH2-containing fusion proteins, it became associated with and phosphorylated these proteins. These results demonstrate that at least in vitro, a tight association occurs between phosphorylated IGF-I receptor and phosphatidylinositol 3-kinase, that the region of phosphatidylinositol 3-kinase that contains its SH2 domains is directly involved in this association, and that this region is a direct substrate for IGF-I receptor tyrosine kinase. Furthermore, these results suggest that Ras GTPase-activating protein can also interact with the IGF-I receptor and that different SH2 domain-containing proteins interact with the IGF-I receptor with widely differing affinities.  相似文献   

15.
Endophilin A1 is an SH3 domain-containing protein functioning in membrane trafficking on the endocytic pathway. We have identified the E3 ubiquitin ligase itch/AIP4 as an endophilin A1-binding partner. Itch belongs to the Nedd4/Rsp5p family of proteins and contains an N-terminal C2 domain, four WW domains and a catalytic HECT domain. Unlike other Nedd4/Rsp5p family members, itch possesses a short proline-rich domain that mediates its binding to the SH3 domain of endophilin A1. Itch ubiquitinates endophilin A1 and the SH3/proline-rich domain interaction facilitates this activity. Interestingly, itch co-localizes with markers of the endosomal system in a C2 domain-dependent manner and upon EGF stimulation, endophilin A1 translocates to an EGF-positive endosomal compartment where it colocalizes with itch. Moreover, EGF treatment of cells stimulates endophilin A1 ubiquitination. We have thus identified endophilin A1 as a substrate for the endosome-localized ubiquitin ligase itch. This interaction may be involved in ubiquitin-mediated sorting mechanisms operating at the level of endosomes.  相似文献   

16.
Vav is a guanine nucleotide exchange factor for the Rho/Rac family that is expressed exclusively in hematopoietic cells. Growth factor receptor-bound protein 2 (Grb2) has been proposed to play important roles in the membrane localization and activation of Vav through dimerization of its C-terminal Src-homology 3 (SH3) domain (GrbS) and the N-terminal SH3 domain of Vav (VavS). The crystal structure of VavS complexed with GrbS has been solved. VavS is distinct from other SH3 domain proteins in that its binding site for proline-rich peptides is blocked by its own RT loop. One of the ends of the VavS beta-barrel forms a concave hydrophobic surface. The GrbS components make a contiguous complementary interface with the VavS surface. The binding site of GrbS for VavS partially overlaps with the canonical binding site for proline-rich peptides, but is definitely different. Mutations at the interface caused a decrease in the binding affinity of VavS for GrbS by 4- to 40-fold. The structure reveals how GrbS discriminates VavS specifically from other signaling molecules without binding to the proline-rich motif.  相似文献   

17.
The E3 ubiquitin ligase Casitas B cell lymphoma-b (Cbl-b) plays a critical role in the development of autoimmunity and sets the threshold for T cell activation. In the absence of Cbl-b, T cells stimulated via the TCR respond similarly to those that have received a CD28-mediated costimulatory signal, suggesting that the absence of Cbl-b substitutes for CD28-mediated costimulation. In this study, we show that loss of Cbl-b restores Ig class switching and germinal center formation in Vav1 mutant mice in response to an in vivo viral challenge. Genetic inactivation of Cbl-b also rescues impaired antiviral IgG production in CD28-mutant mice. Moreover, loss of CD28 results in disorganization of follicular dendritic cell clusters, which is also rescued by the Cbl-b mutation. Intriguingly, despite restored antiviral in vivo immunity and follicular dendritic cell clusters, loss of Cbl-b did not rescue germinal center formation in CD28-deficient mice. Mechanistically, in vivo vesicular stomatitis virus-induced IL-4 and IFN-gamma production and up-regulation of the inducible costimulatory molecule ICOS were dependent on CD28, and could not be rescued by the loss of Cbl-b. These data provide genetic evidence that CD28-dependent in vivo immune responses and Ig class switching can be genetically uncoupled from germinal center formation and ICOS induction by Cbl-b-Vav1-regulated signaling pathways.  相似文献   

18.
Class I(A) phosphatidylinositol 3-kinase (PI 3-kinase) is a key component of important intracellular signalling cascades. We have identified an adaptor protein, Ruk(l), which forms complexes with the PI 3-kinase holoenzyme in vitro and in vivo. This interaction involves the proline-rich region of Ruk and the SH3 domain of the p85 alpha regulatory subunit of the class I(A) PI 3-kinase. In contrast to many other adaptor proteins that activate PI 3-kinase, interaction with Ruk(l) substantially inhibits the lipid kinase activity of the enzyme. Overexpression of Ruk(l) in cultured primary neurons induces apoptosis, an effect that could be reversed by co-expression of constitutively activated forms of the p110 alpha catalytic subunit of PI 3-kinase or its downstream effector PKB/Akt. Our data provide evidence for the existence of a negative regulator of the PI 3-kinase signalling pathway that is essential for maintaining cellular homeostasis. Structural similarities between Ruk, CIN85 and CD2AP/CMS suggest that these proteins form a novel family of adaptor molecules that are involved in various intracellular signalling pathways.  相似文献   

19.
CIN85 is a multidomain adaptor protein implicated in Cbl-mediated down-regulation of receptor tyrosine kinases. CIN85 binding to Cbl is increased after growth factor stimulation and is critical for targeting receptor tyrosine kinases to clathrin-mediated endocytosis. Here we report the identification of a novel polyproline-arginine motif (PXXXPR), specifically recognized by the SH3 domains of CIN85 and its homologue CMS/CD2AP. This motif was indispensable for CIN85 binding to Cbl/Cbl-b, to other CIN85 SH3 domains' effectors, and for mediating an intramolecular interaction between the SH3-A domain and the proline-rich region of CIN85. Individual SH3 domains of CIN85 bound to PXXXPR peptides of Cbl/Cbl-b with micromolar affinities, whereas an extended structure of two or three SH3 domains bound with higher stoichiometry and increased affinity to the same peptides. This enabled full size CIN85 to simultaneously interact with multiple Cbl molecules, promoting their clustering in mammalian cells. The ability of CIN85 to cluster Cbl was important for ligand-induced stabilization of CIN85.Cbl.epidermal growth factor receptor complexes, as well as for epidermal growth factor receptor degradation in the lysosome. Thus, specific interactions of CIN85 SH3 domains with the PXXXPR motif in Cbl play multiple roles in down-regulation of receptor tyrosine kinases.  相似文献   

20.
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号