首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
1. Phenethylbiguanide inhibits the synthesis of phosphoenolpyruvate from malate or 2-oxoglutarate by isolated guinea-pig liver mitochondria. This inhibition is time- and concentration-dependent, with the maximum decrease in the rate of phosphoenolpyruvate synthesis (80%) evident after 10min of incubation with 1mm-phenethylbiguanide. 2. The phosphorylation of ADP by these mitochondria is also inhibited at increasing concentrations of phenethylbiguanide and there is a progressive increase in AMP formation. Guinea-pig liver mitochondria are more sensitive to this inhibition in oxidative phosphorylation caused by phenethylbiguanide than are rat liver mitochondria. 3. Simultaneous measurements of O(2) consumption and ADP phosphorylation with guinea-pig liver mitochondria oxidizing malate plus glutamate in State 3 indicated that phenethylbiguanide at low concentrations (0.1mm) inhibits respiration at Site 1. At higher phenethylbiguanide concentrations Site 2 is also inhibited. 4. Gluconeogenesis from lactate, pyruvate, alanine and glycerol by isolated perfused guinea-pig liver is inhibited to various degrees by phenethylbiguanide. Alanine is the most sensitive to inhibition (60% inhibition of the maximum rate by 0.1mm-phenethylbiguanide), whereas glycerol is relatively insensitive (25% inhibition at 4mm). 5. Gluconeogenesis from lactate and pyruvate by perfused rat liver was also inhibited by phenethylbiguanide, but only at high concentrations (8mm). Unlike guinea-pig liver, the inhibitory effect of phenethylbiguanide on rat liver was reversible after the termination of phenethylbiguanide infusion. 6. The time-course of inhibition of gluconeogenesis from the various substrates used in this study indicated a time-dependency which was related in part to the concentration of infused phenethylbiguanidine. This time-course closely paralleled that noted for the inhibition by phenethylbiguanide of phosphoenolpyruvate synthesis in isolated guinea-pig liver mitochondria.  相似文献   

2.
1. The rate of gluconeogenesis from alanine in the perfused rat liver is affected by the presence of other metabolizable substances, especially fatty acids, ornithine and ethanol. Gluconeogenesis is accelerated by oleate and by ornithine. When both oleate and ornithine were present the acceleration was greater than expected on the basis of mere additive effects. 2. Much NH(3) and some urea were formed from alanine when no ornithine was added. With ornithine almost all the nitrogen released from alanine appeared as urea. 3. Lactate was a major product of alanine metabolism. Addition of oleate, and especially of oleate plus ornithine, decreased lactate formation. 4. Ethanol had no major effect on gluconeogenesis from alanine when this was the sole added precursor. Gluconeogenesis was strongly inhibited (87%) when oleate was also added, but ethanol greatly accelerated gluconeogenesis when ornithine was added together with alanine. 5. In the absence of ethanol the alanine carbon and alanine nitrogen removed were essentially recovered in the form of glucose, lactate, pyruvate, NH(3) and urea. 6. In the presence of ethanol the balance of both alanine carbon and alanine nitrogen showed substantial deficits. These deficits were largely accounted for by the formation of aspartate and glutamine, the formation of which was increased two- to three-fold. 7. When alanine was replaced by lactate plus NH(4)Cl, ethanol also caused a major accumulation of amino acids, especially of aspartate and alanine. 8. Earlier apparently discrepant results on the effects of ethanol on gluconeogenesis from alanine are explained by the fact that under well defined conditions ethanol can inhibit, or accelerate, or be without major effect on the rate of gluconeogenesis. 9. It is pointed out that in the synthesis of urea through the ornithine cycle half of the nitrogen must be supplied in the form of asparate and half in the form of carbamoyl phosphate. The accumulation of aspartate and other amino acids suggests that ethanol interferes with the control mechanisms which regulate the stoicheiometric formation of aspartate and carbamoyl phosphate.  相似文献   

3.
Dichloroacetate, an activator of the pyruvate dehydrogenase complex, is known to lower blood glucose, lactate, pyruvate, and alanine when given to diabetic and 24 h fasted rats. Under certain conditions, especially when pyruvate carboxylase is made rate limiting for want of bicarbonate, dichloroacetate effectively inhibits glucose synthesis from lactate by isolated hepatocytes. 2-Chloropropionate also activates the pyruvate dehydrogenase complex, lowers blood glucose, lactate, and pyruvate in 24 h fasted rats, but stimulates gluconeogenesis from lactate or alanine by isolated hepatocytes. Dichloroacetate is catabolized to glyoxylate and thence to oxalate by liver cells, whereas 2-chloropropionate cannot be catabolized to these products. Glyoxylate and oxalate are potent inhibitors of glucose synthesis from lactate, pyruvate, and alanine, but not from dihydroxyacetone. Inhibition is much more pronounced in a bicarbonate-deficient medium, in which pyruvate carboxylase is probably rate limiting for gluconeogenesis. It seems likely, therefore, that the inhibition of lactate gluconeogenesis by dichloroacetate is actually caused by oxalate, which inhibits pyruvate carboxylation. Nevertheless, the major effect of dichloroacetate, and probably the sole effect of 2-chloropropionate, on blood glucose concentration is to limit substrate availability in the blood for hepatic gluconeogenesis. Since oxalic acid stone formation and renal dysfunction may prove to be side effects of any therapeutic application of dichloroacetate, we suggest that further studies on the treatment of hyperglycemia and lactic acidosis with pyruvate dehydrogenase activators be carried out with 2-chloropropionate rather than dichloroacetate.  相似文献   

4.
1. Glucose synthesis from lactate plus pyruvate and from lactate plus alanine was measured in the presence or absence of 1mM-oleate or 2mM-octanoate at low (2mM) or high (8mM) concentrations of NH4Cl. 2. Both fatty acids alone or with 2mM-NH4Cl doubled glucose production from lactate plus pyruvate. Glucose synthesis from lactate plus alanine, in the presence of oleate, was decreased 16% by 2mM-NH4Cl. 3. In the presence of fatty acids, 8mM-NH4Cl decreased gluconeogenesis by 60-65% from both lactate plus pyruvate and lactate plus alanine. This inhibition was correlated with a high accumulation of aspartate and a drastic decrease in 2-oxoglutarate and malate in the cells. 4. In the presence of 2mM- or 8 mM-NH4Cl, oleate and glucogenic precursors, the addition of 2.5mM-ornithine stimulated urea synthesis. 5. This was paralleled by a decrease of 16% in glucose synthesis from lactate plus pyruvate in the presence of 2mM-NH4Cl and had no effect at 8mM-NH4Cl. In the system producing glucose from lactate plus alanine, ornithine completely reversed the inhibition caused by 2mM-NH4Cl and only partly that by 8mM-NH4Cl. 6. Gluconeogenesis from pyruvate was also inhibited by 2mM-NH4Cl in the presence of oleate or ethanol. This way due to the decrease of malate, which is the C4 precursor of glucose in this system. 7. The limitation of gluconeogenesis by 2-oxoglutarate and malate concentrations in the liver cell and the competition for energy between glucose and urea synthesis is discussed.  相似文献   

5.
Isolated hepatocytes from 24-h-starved rats were used to assess the possible effect of Ahe hypoglycaemic agent 3-mercaptopicolinate on flux through the hepatic pyruvate dehydrogenase complex. Increasing the extraceIIular pyruvate concentration from 1 mM to 2 mM or 5 mM resulted in an increase in flux through pyruvate dehydrogenase and the tricarboxylic acid cycle as measured by14CO2 evolution from [1-14C]pyruvate and [3-14C]pyruvate. Gluconeogenesis was inhibited by 3-mercaptopicolinate from both 1 mM and 2 mM pyruvate, but significant increases in malate and citrate concentrations only occurred in cells incubated with 1 mM pyruvate. Flux through pyruvate dehydrogenase was stimulated by 3-mercaptopicolinate with 1 mM pyruvate but was unaltered with 2 mM pyruvate. Dichloroacetate stimulated flux through pyruvate dehydrogenase with no effect on gluconeogenesis in the presence of I mM pyruvate. There was no effect of 3-mercaptopicolinate, administered in vivo, to 24-h-starved rats on the activity of pyruvate dehydrogenase in freeze-clamped heart or liver tissue, although the drug did decrease blood glucose concentration and increase the blood concentrations of lactate and alanine. Dichloroacetate, administered in vivo to 24-h-starved rats, increased the activity of pyruvate dehydrogenase in freeze-clamped heart and liver, and caused decreases in the blood concentrations of glucose, lactate , and alanine. The results suggest that 3-mercaptopicolinate increases flux through hepatocyte pyruvate dehydrogenase by an indirect mechanism.  相似文献   

6.
The relative importance of the mitochondrial and cytosolic alanine aminotransferase isozymes for providing pyruvate from alanine for further metabolism in the mitochondrial compartment was examined in the isolated perfused rat liver. The experimental rationale employed depends upon the supposition that gluconeogenesis from alanine and the decarboxylation of infused [1-14C]alanine should be diminished by pyruvate transport inhibitors (e.g., alpha-cyanocinnamate) in proportion to the contribution of the cytosolic alanine aminotransferase for generating pyruvate. alpha-Cyanocinnamate inhibited the endogenous rate of glucose production in perfused livers derived from 24-h-fasted rats. The rate of [1-14C]alanine decarboxylation at low (1 mM) and high (10 mM) perfusate alanine concentrations was inhibited by 9.5 and 42%, respectively, in the presence of alpha-cyanocinnamate. In livers from fasted animals perfused with either 1 or 10 mM alanine, alpha-cyanocinnamate caused a substantial increase in the rates of both lactate and pyruvate production. Elevating the hepatic ketogenic rate during infusion of acetate in livers, perfused with alanine, stimulated both the rates of alanine decarboxylation and glucose production; the extent of stimulation of these two metabolic parameters was determined to be a function of the alanine concentration in the perfusate. The stimulation of the rate of alanine decarboxylation during acetate-induced ketogenesis was reversed by co-infusion of alpha-cyanocinnamate with simultaneous increases in the rates of lactate and pyruvate production. The results indicate that during rapid ketogenesis, cytosolic transamination of alanine contributes at least 19% (at 1 mM alanine) and 55% (at 10 mM alanine) of the pyruvate for gluconeogenesis.  相似文献   

7.
Lactate-stimulated ethanol oxidation in isolated hepatocytes   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Hepatocytes isolated from starved rats and incubated without other substrates oxidized ethanol at a rate of 0.8-0.9mumol/min per g wet wt. of cells. Addition of 10mm-lactate increased this rate 2-fold. 2. Quinolinate (5mm) or tryptophan (1mm) decreased the rate of gluconeogenesis with 10mm-lactate and 8mm-ethanol from 0.39 to 0.04-0.08mumol/min per g wet wt. of cells, but rates of ethanol oxidation were not decreased. From these results it appears that acceleration of ethanol oxidation by lactate is not dependent upon the stimulation of gluconeogenesis and the consequent increased demand for ATP. 3. As another test of the relationship between ethanol oxidation and gluconeogenesis, the initial lactate concentration was varied from 0.5mm to 10mm and pyruvate was added to give an initial [lactate]/[pyruvate] ratio of 10. This substrate combination gave a large stimulation of ethanol oxidation (from 0.8 to 2.6mumol/min per g wet wt. of cells) at low lactate concentrations (0.5-2.0mm), but rates remained nearly constant (2.6-3.0mumol/min per g wet wt. of cells) at higher lactate concentrations (2.0-10mm). 4. In contrast, owing to the presence of ethanol, the rate of glucose synthesis was only slightly increased (from 0.08 to 0.12mumol/min per g wet wt. of cells) between 0.5mm- and 2.0mm-lactate and continued to increase (from 0.12 to 0.65mumol/min per g wet wt. of cells) with lactate concentrations between 2 and 10mm. 5. In the presence of ethanol, O(2) uptake increased with increasing substrate concentration over the entire range. 6. Changes in concentrations of glutamate and 2-oxoglutarate closely paralleled changes in the rate of ethanol oxidation. 7. In isolated hepatocytes, rates of ethanol oxidation are lower than those in vivo apparently because of depletion of malate-aspartate shuttle intermediates during cell preparation. Rates are returned to those observed in vivo by substrates that increase the intracellular concentration of shuttle metabolites.  相似文献   

8.
1. Guinea-pig hepatocytes were prepared by collagenase digestion of the perfused liver. 2. The highest rates of gluconeogenesis were obtained from fructose, followed by pyruvate, xylitol and lactate, glycerol and propionate in that order. Maximum rates of gluconeogenesis were attained at 6-10mm substrate. 3. An initial 15-min lag period occurred during gluconeogenesis from lactate. This lag was abolished by preincubating the cells or by preincubation plus the addition of NH(4)Cl or lysine. 4. The lactate/pyruvate and 3-hydroxybutyrate/acetoacetate ratios were increased during the lag and adjusted to values favouring rapid gluconeogenesis from lactate after 15min. 5. The data suggest that the low glucose synthesis during the lag resulted from a limitation of the glutamate-aspartate shuttle and from the unusual redox state of the NAD(+) couple prevailing during this period. 6. At 0.1mm, amino-oxyacetate, a transaminase inhibitor, decreased gluconeogenesis from lactate by 80%, but had a negligible effect on glucose production from pyruvate. Gluconeogenesis from lactate was also inhibited (20%) by 10mm-dl-3-hydroxybutyrate.  相似文献   

9.
1. Sodium dichloroacetate (1mM) inhibited glucose production from L-lactate in kidney-cortex slices from fed, starved or alloxan-diabetic rates. In general gluconeogenesis from other substrates was no inhibited. 2. Sodium dichloracetate inhibited glucose production from L-lactate but no from pyruvate in perfused isolated kidneys from normal or alloxan-diabetic rats. 3. Sodium dichloroacetate is an inhibitor of the pyruvate dehydrogenase kinase reaction and it effected conversion of pyruvate dehydrogenase into its its active (dephosphorylated) form in kidney in vivo. In general, pyruvate dehydrogenase was mainly in the active form in kidneys perfused or incubated with L-lactate and the inhibitory effect of dichloroacetate on glucose production was not dependent on activation of pyruvate dehydrogenase. 4. Balance data from kidney slices showed that dichloroacetate inhibits lactate uptake, glucose and pyruvate production from lactate, but no oxidation of lactate. 5. The mechanism of this effect of dichloroactetate on glucose production from lactate has not been fully defined, but evidence suggests that it may involve a fall in tissue pyruvate concentration and inhibition of pyruvate carboxylation.  相似文献   

10.
1. Gluconeogenesis from lactate or pyruvate was studied in perfused livers from starved rats at perfusate pH7.4 or under conditions simulating uncompensated metabolic acidosis (perfusate pH6.7-6.8). 2. In 'acidotic' perfusions gluconeogenesis and uptake of lactate or pyruvate were decreased. 3. Measurement of hepatic intermediate metabolites suggested that the effect of acidosis was exerted at a stage preceding phosphoenolpyruvate. 4. Total intracellular oxaloacetate concentration was significantly decreased in the acidotic livers perfused with lactate. 5. It is suggested that decreased gluconeogenesis in acidosis is due to substrate limitation of phosphoenolypyruvate carboxykinase. 6. The possible reasons for the fall in oxaloacetate concentration in acidotic livers are discussed; two of the more likely mechanisms are inhibition of the pyruvate carboxylase system and a change in the [malate]/[oxaloacetate] ratio due to the fall in intracellular pH.  相似文献   

11.
Studies on fatty acid and amino acid metabolism in the liver of Walker-256 tumour-bearing rats have revealed several changes. Comparisons, however, have been based on experiments performed with non-physiological, frequently unrealistic, substrate concentrations. The aim of the present work was to examine the influence of physiological substrate concentrations on gluconeogenesis, ketogenesis and related parameters. Isolated livers were perfused and substrates were infused at concentrations that were reported to occur in healthy and tumour-bearing rats. Ketogenesis and the mitochondrial NADH/NAD+ ratio were smaller in the tumour-bearing condition at low (0.2 mM) and high (0.8 mM) oleate concentrations. In the absence of oleate, gluconeogenesis from alanine (0.7 mM) and gluconeogenesis plus the associated changes in oxygen uptake due to lactate/pyruvate (2/0.2 and 6/0.3 mM) were smaller in livers of tumour-bearing rats. However, the response of gluconeogenesis from lactate/pyruvate in livers of tumour-bearing rats to 0.8 mM oleate was more pronounced so that a trend towards normalization was apparent at high substrate and oleate concentrations. Gluconeogenesis from 0.7 mM alanine was not significantly changed by oleate in the tumour-bearing state; in the control condition, stimulation occurred at 0.2 mM oleate and inhibition at 0.8 mM oleate. This diminution almost equalized the hepatic alanine-dependent gluconeogenesis of both control and tumour-bearing rats. Ureogenesis was smaller in the tumour-bearing state and was not affected by oleate. It was concluded that the high concentrations of fatty acids and lactate/pyruvate, which predominate in rats bearing the Walker-256 tumour, could be effective in normalizing the gluconeogenic response of livers from tumour-bearing rats.  相似文献   

12.
Oxamate, a structural analog of pyruvate, known as a potent inhibitor of lactic dehydrogenase, lactic dehydrogenase, produces an inhibition of gluconeogenic flux in isolated perfused rat liver or hepatocyte suspensions from low concentrations of pyruvate (less than 0.5 mM) or substrates yielding pyruvate. The following observations indicate that oxamate inhibits flux through pyruvate carboxylase: accumulation of substrates and decreased concentration of all metabolic intermediates beyond pyruvate; decreased levels of aspartate, glutamate, and alanine; and enhanced ketone body production, which is a sensitive indicator of decreased mitochondrial free oxaloacetate levels. The decreased pyruvate carboxylase flux does not seem to be the result of a direct inhibitory action of oxamate on this enzyme but is secondary to a decreased rate of pyruvate entry into the mitochondria. This assumption is based on the following observations: Above 0.4 mM pyruvate, no significant inhibitory effect of oxamate on gluconeogenesis was observed. The competitive nature of oxamate inhibition is in conflict with its effect on isolated pyruvate carboxylase which is noncompetitive for pyruvate. Fatty acid oxidation was effective in stimulating gluconeogenesis in the presence of oxamate only at concentrations of pyruvate above 0.4 mM. Since only at low pyruvate concentrations its entry into the mitochondria occurs via the monocarboxylate translocator, from these observations it follows that pyruvate transport across the mitochondrial membrane, and not its carboxylation, is the first nonequilibrium step in the gluconeogenic pathway. In the presence of oxamate, fatty acid oxidation inhibited gluconeogenesis from lactate, alanine, and low pyruvate concentrations (less than 0.5 mM), and the rate of transfer of reducing equivalents to the cytosol was significantly decreased. Whether fatty acids stimulate or inhibit gluconeogenesis appears to correlate with the rate of flux through pyruvate carboxylase which ultimately seems to rely on pyruvate availability. Unless adequate rates of oxaloacetate formation are maintained, the shift of the mitochondrial NAD couple to a more reduced state during fatty acid oxidation seems to decrease mitochondrial oxaloacetate resulting in a decreased rate of transfer of carbon and reducing power to the cytosol.  相似文献   

13.
The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.  相似文献   

14.
1. Two-day-old rats were exposed at constant temperature to atmospheres containing air and nitrogen with the air content varied in steps from 100 to 0%. By using this system of graded hypoxia a comparison was made between rates of gluconeogenesis from lactate, serine and aspartate in the whole animal and the concentrations of several liver metabolites. 2. Gluconeogenesis, expressed as the percentage incorporation of labelled isotope into glucose plus glycogen, proceeds linearly for 30min when the animals are incubated in a normal air atmosphere, but is completely suppressed if the atmosphere is 100% nitrogen. 3. Preincubation of animals for between 5 and 30min under an atmosphere containing 19% air results in the attainment of a new steady state with respect to gluconeogenesis and hepatic concentrations of ATP, ADP, AMP, lactate, pyruvate, beta-hydroxybutyrate and acetoacetate. 4. When lactate (100mumol), aspartate (20mumol) or serine (20mumol) was injected, it was shown that the more severe the hypoxia the greater the depression of gluconeogenesis. Under conditions when gluconeogenesis was markedly inhibited there were no changes in the degree of phosphorylation of hepatic adenine nucleotides, but free [NAD(+)]/[NADH] ratios fell in both cytosol and mitochondrial compartments of the liver cell. 5. Measurements of total liver NAD(+) and NADH showed that the concentrations of these nucleotide coenzymes changed less with anoxia, in comparison with the concentration ratio of free coenzymes. 6. Calculations showed that the difference in NAD(+)-NADH redox potentials between mitochondrial and cytosol compartments increased with the severity of hypoxia. 7. From the constancy of the concentrations of adenine nucleotides it is concluded that liver of hypoxic rats can conserve ATP by lowering the rate of ATP utilization for gluconeogenesis. Gluconeogenesis may be regulated in turn by the changes in mitochondrial and cytosol redox state.  相似文献   

15.
3-Mercaptopicolinic acid, an inhibitor of gluconeogenesis   总被引:19,自引:16,他引:3  
1. 3-Mercaptopicolinic acid (SK&F 34288) inhibited gluconeogenesis in vitro, with lactate as substrate, in rat kidney-cortex and liver slices. 2. In perfused rat livers, gluconeogenesis was inhibited when lactate, pyruvate or alanine served as substrate, but not with fructose, suggesting pyruvate carboxylase or phosphoenolpyruvate carboxylase as the site of inhibition. No significant effects were evident in O(2) consumption, hepatic glycogen, urea production, or [lactate]/[pyruvate] ratios. 3. A hypoglycaemic effect was evident in vivo in starved and alloxan-diabetic rats, starved guinea pigs and starved mice, but not in 4h-post-absorptive rats. 4. In the starved rat the hypoglycaemia was accompanied by an increase in blood lactate. 5. A trace dose of [(14)C]lactate in vivo was initially oxidized to a lesser extent in inhibitor-treated rats, but during 90min the total CO(2) evolved was slightly greater. The total amount of the tracer oxidized was not significantly different from that in the controls.  相似文献   

16.
These studies were undertaken to determine the mechanism by which intravenously administered lead salts inhibit hepatic gluconeogenesis. Within 1 h after the intravenous administration of lead acetate (10 mg), there is 97% inhibition of CO2 fixation in isolated rat liver mitochondria. This effect is concentration-dependent. The induction of phosphoenolpyruvate carboxykinase activity observed with starvation was also inhibited by intravenously administered lead acetate, but the activities of pyruvate kinase, glucose 6-phosphate dehydrogenase and pyruvate carboxylase were unaffected, as was the oxidation of palmitate and palmitoyl-CoA by mitochondria from Pb2+-treated animals. The addition of reduced glutathione to mitochondria from Pb2+-treated animals had no effect on the inhibited CO2 fixation. ATP concentrations in mitochondria from Pb2+-treated animals are decreased and the dose-response relationships for the effect of Pb2+ on CO2 fixation and ATP concentrations correspond. We conclude that the decrease in mitochondrial ATP in Pb2+-treated animals is probably responsible for the marked inhibition ov CO2 fixation, and hence the impairment of gluconeogenesis from alanine, lactate and pyruvate observed by others.  相似文献   

17.
Fisetin is a flavonoid dietary ingredient found in the smoke tree (Cotinus coggyria) and in several fruits and vegetables. The effects of fisetin on glucose metabolism in the isolated perfused rat liver and some glucose‐regulating enzymatic activities were investigated. Fisetin inhibited glucose, lactate, and pyruvate release from endogenous glycogen. Maximal inhibitions of glycogenolysis (49%) and glycolysis (59%) were obtained with the concentration of 200 µM. The glycogenolytic effects of glucagon and dinitrophenol were suppressed by fisetin 300 µM. No significant changes in the cellular contents of AMP, ADP, and ATP were found. Fisetin increased the cellular content of glucose 6‐phosphate and inhibited the glucose 6‐phosphatase activity. Gluconeogenesis from lactate and pyruvate or fructose was inhibited by fisetin 300 µM. Pyruvate carboxylation in isolated intact mitochondria was inhibited (IC50 = 163.10 ± 12.28 µM); no such effect was observed in freeze‐thawing disrupted mitochondria. It was concluded that fisetin inhibits glucose release from the livers in both fed and fasted conditions. The inhibition of pyruvate transport into the mitochondria and the reduction of the cytosolic NADH‐NAD+ potential redox could be the causes of the gluconeogenesis inhibition. Fisetin could also prevent hyperglycemia by decreasing glycogen breakdown or blocking the glycogenolytic action of hormones. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Although metformin has been used to treat type 2 diabetes for several decades, the mechanism of its action on glucose metabolism remains controversial. To further assess the effect of metformin on glucose metabolism this work was undertaken to investigate the acute actions of metformin on glycogenolysis, glycolysis, gluconeogenesis, and ureogenesis in perfused rat livers. Metformin (5 mM) inhibited oxygen consumption and increased glycolysis and glycogenolysis in livers from fed rats. In perfused livers of fasted rats, the drug (concentrations higher than 1.0 mM) inhibited oxygen consumption and glucose production from lactate and pyruvate. Gluconeogenesis and ureogenesis from alanine were also inhibited. The cellular levels of ATP were decreased by metformin whereas the AMP levels of livers from fasted rats were increased. Taken together our results indicate that the energy status of the cell is probably compromised by metformin. The antihyperglycemic effect of metformin seems to be the result of a reduced oxidative phosphorylation without direct inhibition of key enzymatic activities of the gluconeogenic pathway. The AMP-activated protein kinase cascade could also be a probable target for metformin, which switches on catabolic pathways such as glycogenolysis and glycolysis, while switches off ATP consuming processes.  相似文献   

19.
Although the role of acetylcholine (Ach) in hepatic glucose metabolism is well elucidated, it is still unclear if it influences gluconeogenesis, glycogenolysis and high-energy phosphate metabolism, and if it does what the mechanisms of this influence are. Therefore, using isolated perfused rat liver as a model, we have studied the effect of Ach on oxygen consumption, synthesis of glucose from lactate and pyruvate, glycogen formation, mitochondrial oxidative phosphorylation and ATP-synthesis. We have established that effects of Ach on oxygen consumption depend on its concentration. When used at a concentration of 10(-7) M, Ach exerts maximum stimulatory effect, while its infusion at 10(-6) M causes a decrease of oxygen consumption by the liver. Moreover, when used at a concentration of 10(-6) M or 10(-7) M, Ach increases rates of glucose production from the gluconeogenic substrates lactate and pyruvate, leading to enhanced glycogen content in perfused liver. It was also shown that Ach possesses a stimulating effect on alanine and aspartate aminotransferases. As detected by 31P NMR spectroscopy, continuous liver perfusion with pyruvate and lactate in the presence of Ach leads to a significant decrease of ATP level, implying enhanced energy requirements for gluconeogenesis under these conditions. Elimination of the described effects of Ach by atropine, the antagonist of muscarinic receptors, and identification of the type 3 muscarinic receptors (m3) in isolated hepatocytes as well as in whole liver, imply that Ach may exert its effect on liver metabolism through m3 receptors.  相似文献   

20.
Tumor necrosis factor α (TNFα) is a cytokine involved in many metabolic responses in both normal and pathological states. Considering that the effects of TNFα on hepatic gluconeogenesis are inconclusive, we investigated the influence of this cytokine in gluconeogenesis from various glucose precursors. TNFα (10 μg/kg) was intravenously injected in rats; 6 h later, gluconeogenesis from alanine, lactate, glutamine, glycerol, and several related metabolic parameters were evaluated in situ perfused liver. TNFα reduced the hepatic glucose production (p < 0.001), increased the pyruvate production (p < 0.01), and had no effect on the lactate and urea production from alanine. TNFα also reduced the glucose production (p < 0.01), but had no effect on the pyruvate production from lactate. In addition, TNFα did not alter the hepatic glucose production from glutamine nor from glycerol. It can be concluded that the TNFα inhibited hepatic gluconeogenesis from alanine and lactate, which enter in gluconeogenic pathway before the pyruvate carboxylase step, but not from glutamine and glycerol, which enter in this pathway after the pyruvate carboxylase step, suggesting an important role of this metabolic step in the changes mediated by TNFα.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号