首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文将来自反硝化无色杆菌Achromobacterdenitrificans1104的酯酶基因EHest,转化大肠杆菌中,成功表达了具有不对称水解农药甲霜灵的中间体(R,S)-2,6-二甲基苯基氨基丙酸甲酯( MAP )活性的酯酶EHesterase。用重组酯酶EHesterase催化MAP 的水解,底物浓度50 g/L,反应1h的转化率29.5%,产物( R-酸)的eep 是85.1%。该酶的最适反应pH和温度分别为9.0和50℃,在50℃以下和pH5~9之间具有较好的稳定性。该酶水解MAP 的米氏动力学参数Vm、Km 分别是0.733 g/(L·min)和7.49 g/L。加入10%DMSO对酶EHesterase的立体选择性和催化速度有一定的促进作用。 Cu2+、Fe3+对酶活有明显抑制作用。该酶水解MAP 的活性与水解p-对硝基苯乙酸酯的活性数量级相当,是水解橄榄油活性的333倍。  相似文献   

2.
Three novel chiral packing materials for high-performance liquid chromatography were prepared by covalently binding of (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]propan-amide (7), (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]-4-methylpentanamide (8), and (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonyl-amino]-2-phenylacetamide (9) to aminopropyl silica. The resulting chiral stationary phases (CSPs 1-3) proved effective for the resolution of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidone derivatives (TR 1-14). The mechanism of their enantioselection, supported by the elution order of (S)-TR 13 and (R)-TR 13 and molecular modeling of the complex of the slower running (S)-TR 13 with CSP 1 is discussed.  相似文献   

3.
A series of pharmacophoric hybrids of ameltolide-gamma-aminobutyric acid (GABA)-amides was designed, synthesized, and evaluated for their anticonvulsant and neurotoxic properties. Initial anticonvulsant screening was performed using intraperitoneal (ip) maximal electroshock-induced seizure (MES), subcutaneous pentylenetetrazole (scPTZ), and subcutaneous picrotoxin (scPIC)-induced seizure threshold tests. All the compounds had improved lipophilicity and the pharmacological activity profile confirmed their blood-brain barrier penetration. The titled compounds showed promising activity in scPIC screen indicating the involvement of GABA-mediation. Compound 4-(2-(2,6-dimethylaminophenylamino)-2-oxoethylamino)-N-(2,6-dimethylphenyl) butanamide (7) emerged as the most potent derivative effective in all the three animal models of seizure with no neurotoxicity at the anticonvulsant dose.  相似文献   

4.
Methyl (R)‐N‐(2,6‐dimethylphenyl)alaninate ((R)‐DMPM) is a key chiral intermediate for the production of (R)‐metalaxyl, which is one of the best‐selling fungicides. A new strain, Pseudochrobactrum asaccharolyticum WZZ003, was identified as a biocatalyst for the enantioselective hydrolysis of (R,S)‐DMPM. The key parameters including pH, temperature, rotation speed and substrate concentrations were optimized in the enantioselective hydrolysis of (R,S)‐DMPM. After the 48 h hydrolysis of 256 mM (R,S)‐DMPM under the optimized reaction conditions, the enantiomeric excess of product (e.e.p) was up to 99% and the conversion was nearly 50%. Subsequently, the unhydrolyzed (S)‐DMPM was converted to (R,S)‐DMPM through the n‐butanal‐catalyzed racemization. Furthermore, stereoselective hydrolysis of (R,S)‐DMPM catalyzed by whole cells of P. asaccharolyticum WZZ003 was scaled up to kilogram‐scale, offering (R)‐MAP‐acid with 98.6% e.e.p and 48.0% yield. Moreover, (R)‐metalaxyl was prepared at kilogram scale after subsequent esterification and coupling reactions. Therefore, a practical production process of (R)‐DMPM and (R)‐metalaxyl with the prospect of industrialization was developed in this study. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:921–928, 2018  相似文献   

5.
N1-(2,6-Dimethylphenyl)-2-(4-{(2R,4S)-2-benzyl-1-[3,5-di(trifluoromethyl)[carbonyl-(11)C]benzoyl]hexahydro-4-pyridinyl}piperazino)acetamide ([(11)C]R116301) was prepared and evaluated as a potential positron emission tomography (PET) ligand for investigation of central neurokinin(1) (NK(1)) receptors. 1-Bromo-3,5-di(trifluoromethyl)benzene was converted in three steps into 3,5-di(trifluoromethyl)[carbonyl-(11)C]benzoyl chloride, which was reacted with N1-(2,6-dimethylphenyl)-2-{4-[(2R,4S)-2-benzylhexahydro-4-pyridinyl]piperazino}acetamide providing [(11)C]R116301 in 45-57% decay-corrected radiochemical yield. The total synthesis time, from end of bombardment (EOB) to the formulated product, was 35 min. Specific activity (SA) was 82-172 GBq/micromol (n=10) at the end of synthesis. N1-([4-(3)H]-2,6-Dimethylphenyl)-2-(4-{(2R,4S)-2-benzyl-1-[3,5-di(trifluoromethyl)benzoyl]hexahydro-4-pyridinyl}piperazino)acetamide ([(3)H]R116301) was also synthesized (SA: 467 GBq/mmol). The B(max) for [(3)H]R116301 measured in vitro on Chinese hamster ovary cell membranes stably transfected with the human NK(1) receptor was 19.10+/-1.02 pmol/mg protein with an apparent dissociation constant of 0.08+/-0.01 nM. Ex vivo, in vivo and in vitro autoradiography studies with [(3)H]R116301 in gerbils demonstrated a preferential accumulation of the radioactivity in the striatum, olfactory tubercule, olfactory bulb and locus coeruleus. In vivo, the biodistribution of [(11)C]R116301 in gerbils revealed that the highest initial uptake is in the lung, followed by the liver and kidney. In the brain, maximum accumulation was found in the olfactory tubercules (1.10+/-0.08 injected dose (ID)/g 20 min post injection (p.i.)) and the nucleus accumbens (1.00+/-0.12ID/g 10 min p.i.). Tissue/cerebellum concentration ratios for striatum and nucleus accumbens increased with time due to rapid uptake followed by a slow wash out (1.29 and 1.64, respectively, 30 min p.i.). A tissue to cerebellum ratio of 1.33 and 1.62 was also observed for olfactory bulb and olfactory tubercules, respectively (20 min p.i.). In summary, [(11)C]R116301 appears to be a promising radioligand suitable for the visualization of NK(1) receptors in vivo using PET.  相似文献   

6.
A thiazole derivative, 2-(2,6-dichlorobenzyl)-N-(4-isopropylphenyl) thiazole-4-carboxamide (1), was identified as a TRPV1 antagonist. We synthesized various thiazole analogs and evaluated them for their ability to block capsaicin- or acid-induced calcium influx in TRPV1-expressing CHO cells. The IC(50) values of the most potent antagonists were ca. 0.050microM in these assays.  相似文献   

7.
A series of 2-[(2,6)-dimethylphenyl]benzimidazole analogs displayed strong potential for mutagenicity following metabolic activation in either TA98 or TA100 Salmonella typhimurium strains. The number of revertants was significantly reduced by replacing the 2,6-dimethylphenyl group with a 2,6-dichlorophenyl moiety. Time-dependent CYP3A4 inhibition was also observed with a compound containing a 2-[(2,6)-dimethylphenyl] benzimidazole ring, implying risk for this scaffold to generate reactive metabolites.  相似文献   

8.
Preparation of 98% ee (R)-4-chloro-2-butanol was carried out by the enzymatic hydrolysis of chlorohydrin esters, using fungal resting cells and commercial enzymes. Hydrolyzes were carried out using lipases from Candida antarctica (Novozym 435), C. rugosa, Rhizomucor miehei (Lipozyme IM), Burkolia cepacia, and resting cells of Rhizopus oryzae and Aspergillus flavus. The influence of the enzyme, the solvent, the temperature, and the alkyl chain length on the selectivity of hydrolyzes of isomeric mixtures of chlorohydrin esters is described. Regioselectivity was higher than 95% for some of the tested lipases. Novozym 435 allowed preparation of the (R)-4-chloro-2-butanol after 15 min of reaction at 30-40 degrees C.  相似文献   

9.
A group of trans- and cis-2-(2,6-dimethylphenoxy)-N-(2-hydroxycyclohexyl)acetamides (1-7) and -ethylamines (8-9) have been synthesized and investigated for their anticonvulsant activity. One of them, racemic trans-2-(2,6-dimethylphenoxy)-N-(2-hydroxycyclohexyl)acetamide proved to be the most effective in MES (mice, ip), exhibiting ED(50)=42.97 mg/kg b.w. and TD(50)=105.67 mg/kg b.w. It also proved protection in focal seizures (electric kindling, rats, ip) and it raises seizure threshold. The mechanism of action is inhibition of voltage-gated sodium currents and enhancement of GABA effect. Safety pharmacology assay on threshold tonic extension revealed no lowering of the seizure threshold.  相似文献   

10.
Several new acridinium esters 2 – 9 having their central acridinium ring bearing a 9-(2,5-dimethylphenoxycarbonyl), 9-(2,6-bis(trifluoromethyl)phenoxycarbonyl) or 9-(2,6-dinitrophenoxycarbonyl) group, and a 10-methyl, 10-(3-(succinimidyloxycarbonyl)propyl), 10-(5-(succinimidyloxycarbonyl)pentyl), or 10-(10-(succinimidyloxycarbonyl)decyl) group, have been synthesized and their chemiluminescent properties have been tested. The 2,5-dimethylphenyl acridinium esters emit light slowly (glow) when treated with alkaline hydrogen peroxide, while the 2,6-dinitrophenyl and 2,6-bis(trifluoromethyl)phenyl esters emit light rapidly (flash). The substituent at the 10 position affects the hydrolytic stabilities of the compounds.  相似文献   

11.
Based on the structure of N-[(R,R)-(E)-1-(4-chlorobenzyl)-3-(2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide (1), attempts to improve the NK(2) affinity have resulted in the discovery of N-[(R,R)-(E)-1-(3,4-dichlorobenzyl)-3-(2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide (9, DNK333) exhibiting a 5-fold improved affinity to the NK(2) receptor in comparison to 1. Simplification of the structure via elimination of a chiral centre led to 3-[N'-3,5-bis(trifluoromethyl)benzoyl-N-(3,4-dichlorobenzyl)-N'-methylhydrazino]-N-[(R)-2-oxo-azepan-3-yl]propionamide (22), a potent and fairly balanced NK(1)/NK(2) antagonist.  相似文献   

12.
N,N′-bis-[2-N-(O-2,6-dichlorobenzyl-L-tyrosyl)aminoethylguanyl]cystamine 3 and N,N′-bis-[2-N-(O-2,6-dichlorobenzyl-L-tyrosyl)aminoethyl]-1,6-hexanediguanidine 4 have been designed as neuropeptide Y (NPY) functional group mimetics. Both 3 and 4 displace N-[propionyl-3H]-NPY from rat brain binding sites, and are NPY receptor antagonists in rat femoral artery ring segments.  相似文献   

13.
A new series of oxopyrrolidines was synthesized and evaluated for their effect on Alzheimer‘s disease by measuring their inhibitory activity against acetyl cholinesterase enzyme and amyloid β 42 protein. Most of the compounds showed good inhibitory activity with ethyl 2-(2-(2, 6-dimethylphenylcarbamoyl)- 5-oxopyrrolidin-1-yl) acetate (V) having the highest activity against acetyl cholinesterase with IC50 value 1.84 ng/g tissue compared to standard donepezil 3.34 ng/g tissue. Furthermore, compound 1-((4-(4-chlorophenyl) piperazin-1-yl) methyl)-N-(2,6-dimethylphenyl)-5- oxopyrrolidine- 2-carboxamide (IIIe) displayed the highest activity against β 42 protein with IC50 value of 11.3 Pg/g tissue compared to 18.4 Pg/g tissue of donepezil.  相似文献   

14.
A straightforward synthesis of meso-2,6-diaminopimelic acid (DAP) meso-1 was developed from 1,4-diacetoxycyclohept-2-ene (2) via an oxidative ring cleavage. Subsequently, an enantio-divergent synthesis of (S,S)- and (R,R)-1 was performed using a homochiral monoacetate 7 available from 2 by enzymatic desymmetrization.  相似文献   

15.
The enantiomers of various 1-(alpha-aminobenzyl)-2-naphthol and 1-(aminoalkyl)-2-naphthol analogs were separated on cellulose-tris-3,5-dimethylphenyl carbamate-based chiral stationary phases (Chiralcel OD-H and Chiralcel OD-RH), using n-hexane/2-propanol/diethylamine or phosphate buffer/organic modifier mobile phases. The 3,5-dimethylphenyl carbamoylated cellulose columns were effective in both normal and rev ersed-phase modes. The effects of the mobile phase composition, the pH, the buffer concentration, and the structures of the substituents on the 2-naphthol on the enantioseparations were studied. The absolute configuration and elution sequence were determined for 1-(1-amino-2-methylpropyl)-2-naphthol: the elution sequence was S < R.  相似文献   

16.
Recent evidence suggests an innovative application of chemical modulators targeting the S1P(4) receptor as novel mechanism-based drugs for the treatment of influenza virus infection. Modulation of the S1P(4) receptor may also represent an alternative therapeutic approach for clinical conditions where reactive thrombocytosis is an undesired effect or increased megakaryopoiesis is required. With the exception of our recent research program disclosure, we are not aware of any selective S1P(4) antagonists reported in the literature to date. Herein, we describe complementary structure-activity relationships (SAR) of the high-throughput screening (HTS)-derived hit 5-(2,5-dichlorophenyl)-N-(2,6-dimethylphenyl)furan-2-carboxamide and its 2,5-dimethylphenyl analog. Systematic structural modifications of the furan ring showed that both steric and electronic factors in this region have a significant impact on the potency. The furan moiety was successfully replaced with a thiophene or phenyl ring maintaining potency in the low nanomolar range and high selectivity against the other S1P receptor subtypes. By expanding the molecular diversity within the hit-derived class, our SAR study provides innovative small molecule potent and selective S1P(4) antagonists suitable for in vivo pharmacological validation of the target receptor.  相似文献   

17.
Bioisosteric replacement studies led to the identification of N-(1-benzo[1,3]dioxol-5-yl-ethyl)-3-(2-chloro-phenyl)-acrylamide ((S)-3) as a highly potent KCNQ2 opener, and 3-(2,6-difluoro-phenyl)-N-[1-(2,3-dihydro-benzofuran-5-yl)-ethyl]-acrylamide ((S)-4), and N-[1-(2,3-dihydro-1H-indol-5-yl)-ethyl]-3-(2-fluoro-phenyl)-acrylamide ((S)-5) as highly efficacious KCNQ2 openers. In contrast, their respective R enantiomers showed significantly less or no appreciable KCNQ2 opener activity even at the highest concentration tested (10 microM). Because of its high potency and moderate efficacy as well as its convenient synthesis, (+/-)-3 was selected as a reference compound for analyzing efficacies of KCNQ openers in electrophysiology studies. Compounds (S)-4 and (S)-5 demonstrated significant activity in reducing neuronal hyperexcitability in rat hippocampal slices. The synthesis and the KCNQ2 opener activity of these acrylamides are described.  相似文献   

18.
(2R, 6R, 10R)-6,10,14-Trimethyl-2-pentadecanol, the female pheromone of the rice moth (Corcyra cephalonica), methyl (2R, 6R, 10R)-2,6,10-trimethyltridecanoate, the male pheromone of the stink bug (Euschistus heros) were synthesized by employing (2R, 6S)-7-acetoxy-2,6-dimethyl-1-heptanol as the common chiral building block.  相似文献   

19.
Im SH  Ryoo JJ  Lee KP  Choi SH  Jeong YH  Jung YS  Hyun MH 《Chirality》2002,14(4):329-333
Recently, it was reported that the chiral recognition ability of (R)-N-3,5-dinitrobenzoyl phenylglycinol derivative was examined as a new HPLC chiral stationary phase (CSP 1) for the resolution of racemic N-acylnaphthylalkylamines. However, the mechanism of chiral discrimination on the CSP remained elusive until now. In this study, a spectroscopic investigation of the chiral discrimination mechanism of CSP 1 was undertaken using mixtures of (R)-N-3,5-dinitrobenzoyl phenylglycinol-derived chiral selector (2) and each of the enantiomers of N-acylnaphthylalkylamines (3) by NMR study. First, the differences in free energy changes (DeltaDeltaG) upon diastereomeric complexation in solution between the complex of each isomer with chiral selector 2 by NMR titration were calculated. The values were then compared with those estimated by chiral HPLC. The chemical shift changes of each proton on the chiral selector and analytes were also checked and it was found that the chemical shift changes decreased continuously as the acyl group on analytes increased in length. This observation was consistent with the HPLC data. From these experimental results, the interaction mechanism of chiral discrimination between the chiral selector and the analytes is more precisely explained.  相似文献   

20.
The synthesis of the two enantiomers of 3-(3,4-dimethylphenyl)-1-propylpiperidine 1, a potent and selective D4 dopaminergic ligand, was performed. The 3-(3,4-dimethylphenyl)- 1-propylpiperidine with the R configuration showed an affinity for the D4 receptors 6-fold higher than the corresponding enantiomer with the S configuration. Furthermore, the (R)-1 enantiomer proved to be highly selective for D4 receptors with respect to D2-D3 receptors, with a Ki ratio higher than 25,000, while the (S)-1 enantiomer was about 100-fold less selective than the (R)-1 one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号