首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical synthesis of 1,2,4-tri-O-acetyl-3-deoxy-3-fluoro-5-thio-D-xylopyranose, 1,2,4,6-tetra-O-acetyl-3-deoxy-3-fluoro-5-thio-alpha-D-glucopyranose and their corresponding nucleosides of thymine is described. Treatment of 3-fluoro-5-S-acetyl-5-thio-D-xylofuranose, obtained by hydrolysis of the isopropylidene group of 3-fluoro-1,2-O-isopropylidene-5-S-acetyl-5-thio-D-xylofuranose, with methanolic ammonia and direct acetylation, led to triacetylated 3-deoxy-3-fluoro-5-thio-D-xylopyranose. Condensation of acetylated 3-fluoro-5-thio-D-xylopyranose with silylated thymine afforded the corresponding nucleoside. Selective benzoylation and direct methanesulfonylation of 3-fluoro-1,2-O-isopropylidene-alpha-D-glucofuranose gave the 6-O-benzoyl-5-O-methylsulfonyl derivative, which on treatment with sodium methoxide afforded the 5,6-anhydro derivative. Treatment of the latter with thiourea, followed by acetolysis, gave the 3-fluoro-5-S-acetyl-6-O-acetyl-1,2-O-isopropylidene-5-thio-alpha-D-glucofuranose. 3-fluoro-5-S-acetyl-6-O-acetyl-5-thio-D-glucofuranose, obtained after hydrolysis of 5-thiofuranose isopropylidene, was treated with ammonia in methanol and directly acetylated, giving tetraacetylated 3-deoxy-3-fluoro-5-thio-alpha-D-glucopyranose. Condensation of the latter with silylated thymine afforded the desired 3-deoxy-3-fluoro-5-thio-beta-D-glucopyranonucleoside analogue.  相似文献   

2.
Treatment of 1,2,3-tri-O-acetyl-5,6-anhydro-D-galactofuranose with thiourea gave 1,2,3-tri-O-acetyl-5,6-dideoxy-5,6-epithio-L-altrofuranose, acetolysis of which gave 1,2,3,6-tetra-O-acetyl-5-S-acetyl-5-thio-L-altrofuranose. Deacetylation of the latter gave 5-thio-L-altrose.  相似文献   

3.
2,4-O-Benzylidene-L-xylose was converted via a Wittig reaction into Z-2,4-O-benzylidene-5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hex-5-++ +enitol (17), which, on hydrogenation, gave 5,6-dideoxy-6-C-(2,4-dichlorophenyl)-D-xylo- hexitol (33). tert-Butyldimethylsililation of the primary hydroxyl group of 33, followed by 4-methoxybenzylation, and desilylation afforded 5,6-dideoxy-6-C-(2,4-dichlorophenyl)-2,3,4-tri-O-(4-methoxybenzyl)-D-xyl o- hexitol (54). A Mitsunobu-type reaction of 54 replaced HO-1 by cyanide to give, after hydrolysis and hydrogenolysis, 2,6,7-trideoxy-7-C-(2,4- dichlorophenyl)-D-xylo-heptono-1,4-lactone (55). Mesylation of 33 and then acetylation gave 2,3,4-tri-O-acetyl-5,6-dideoxy- 6-C-(2,4-dichlorophenyl)-1-O-methanesulfonyl-D-xylo-hexitol (63), which was converted via its 1-thiobenzoate into bis[1,5,6-trideoxy-6-C-(2,4-dichlorophenyl)-D-xylo-hexitol] 1,1'-disulfide (65). Acetylation of 65, followed by permanganate oxidation and deacetylation, afforded sodium 6-(2,4-dichlorophenyl)-D-xylo- 2,3,4-trihydroxy-hexanesulfonate (67). Both 57 (obtained from 55 by hydrolysis with NaOH) and 67 are weak inhibitors of HMG-CoA reductase.  相似文献   

4.
Two independent approaches were investigated for the synthesis of 3,4-di-O-acetyl-1,6:2,5-dianhydro-1-thio-D-glucitol (18), a key intermediate in the synthesis of 1,3,4-tri-O-acetyl-2,5-anhydro-6-thio-alpha-D-glucoseptanose (13), needed as glycosyl donor. In the first approach 1,6-dibromo-1,6-dideoxy-D-mannitol was used as starting material and was converted via 2,5-anhydro-1,6-dibromo-1,6-dideoxy-4-O-methanesulfonyl-3-O-tetrahydropy ranyl-D-glucitol into 18. The second approach started from 1,2:5,6-di-O-isopropylidene-D-mannitol and the allyl, 4-methoxybenzyl as well as the methoxyethoxymethyl groups were used, respectively, for the protection of the 3,4-OH groups. The resulting intermediates were converted via their 1,2:5,6-dianhydro derivatives into the corresponding 3,4-O-protected 2,5-anhydro-6-bromo-6-deoxy-D-glucitol derivatives. The 1,6-thioanhydro bridge was introduced into these compounds by exchanging the bromine with thioacetate, activating OH-1 by mesylation and treating these esters with sodium methoxide. Among these approaches, the 4-methoxybenzyl protection proved to be the most suitable for a large scale preparation of 18. Pummerer rearrangement of the sulfoxide, obtained via oxidation of 18 gave a 1:9 mixture of 1,3,4-tri-O-acetyl-2,5-anhydro-6-thio-alpha-L-gulo- (12) and -D-glucoseptanose 13. When 12 or 13 were used as donors and trimethylsilyl triflate as promoter for the glycosylation of 4-cyanobenzenethiol, a mixture of 4-cyanophenyl 3,4-di-O-acetyl-2,5-anhydro-1,6-dithio-alpha-L-gulo- (58) and -alpha-D-glucoseptanoside (61) was formed suggesting an isomerisation of the heteroallylic system of the intermediate. A similar mixture of 58 and 61 resulted when 18 was treated with N-chloro succinimide and the mixture of chlorides was used in the presence of zinc oxide for the condensation with 4-cyanobenzenethiol. When 4-nitrobenzenethiol was applied as aglycon and boron trifluoride etherate as promoter, a mixture of 4-nitrophenyl 3,4-di-O-acetyl-2,5-anhydro-1,6-dithio-alpha-L-gulo- (60) and -alpha-D-glucoseptanoside (62) was obtained. Deacetylation of 58, 61 and 62 according to Zemplen afforded 4-cyanophenyl 2,5-anhydro-1,6-dithio-alpha-L-glucoseptanoside (59), 4-cyanophenyl 2,5-anhydro-1,6-dithio-alpha-D-glucoseptanoside (63) and 4-nitrophenyl 2,5-anhydro-1,6-dithio-alpha-D-glucoseptanoside (66), respectively. The 4-cyano group of 63 was transformed into the 4-aminothiocarbonyl, and the 4-(methylthio)(imino)methyl derivative and the 4-nitro group of 66 into the acetamido derivative. All of these thioglycosides displayed a stronger oral antithrombotic effect in rats compared with beciparcil, used as reference.  相似文献   

5.
DBU catalyzed condensation of 3-O-benzyl(methyl)-5,6-dideoxy-1,2-O-isopropylidene-beta-L-threo-hept-4-enofuranuronates with different aldehydes produces the corresponding 3-O-benzyl(methyl)-6-carbethoxy-5,6-dideoxy-1,2-O-isopropylidene-7-phenyl-beta-L-threo-hept-4-enofuranoses. The latter on treatment with methanesulfonyl chloride followed by DBU catalyzed E2 reaction of the methanesulfonyloxy intermediates gave the respective 3-O-benzyl(methyl)-6-carbethoxy-5,6,7-trideoxy-1,2-O-isopropylidene-7-phenyl-beta-L-threo-hept-4,6-dienofuranose in moderate to good yields.  相似文献   

6.
1,2:5,6-Di-O-isopropylidene-alpha-D-glucofuranose by the sequence of mild oxidation, reduction, fluorination, periodate oxidation, borohydride reduction, and sulfonylation gave 3-deoxy-3-fluoro-1,2-O-isopropylidene-5-O-p-toluenesulfonyl-alpha-D-xylofuranose (5). Tosylate 5 was converted to thioacetate derivative 6, which after acetolysis gave 1,2-di-O-acetyl-5-S-acetyl-3-deoxy-3-fluoro-5-thio-D-xylofuranose (7). Condensation of 7 with silylated thymine, uracil, and 5-fluorouracil afforded nucleosides 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) thymine (8), 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) uracil (9), and 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) 5-fluorouracil (10). Compounds 8, 9, and 10 are biologically active against rotavirus infection and the growth of tumor cells.  相似文献   

7.
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The reaction of 1,2-O-isopropylidene-α- d-glucofuranose with sulfuryl chloride at 0° and at 50° afforded 6-chloro-6-deoxy-1,2-O-isopropylidene-α- d-glucofuranose 3,5-bis(chlorosulfate) ( 3) and 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β- l-idofuranose 3-chlorosulfate ( 7, not characterised), respectively. Dechlorosulfation of 3 afforded the hydroxy derivative, whereas treatment of 3 with pyridine gave the 3,5-(cyclic sulfate). Dechlorosulfation of 7 afforded 5,6-dichloro-5,6-dideoxy-1,2-O-isopropylidene-β- l-idofuranose which, on acid hydrolysis, was converted into 3,6-anhydro-5-chloro-5-deoxy- l-idofuranose. 5-Chloro-5-deoxy-α- l-idofuranosidurono-6,3-lactone and 5-chloro-5-deoxy-β- l-idofuranurono-6,3-lactone derivatives were also prepared.  相似文献   

9.
From 2-anisylideneamino-1,3,4-tri-O-acetyl-2,6-dideoxy-6-S-acetyl-6-thio-β-D-glucopyranose, three derivatives of 2-amino-2-deoxy-1,6-dithio-D-glucose were prepared, i.e., 2-anisylidene-amino-3,4-di-O-acetyl-1,2,6-trideoxy-1,6-di-S-acetyl-1,6-dithio-β-D-glucopyranose, 2-amino-3,4-di-O-acetyl-1,2,6-trideoxy-1,6-di-S-acetyl-1, 6-dithio-β-D-glucopyranose hydrochloride and 2-acet-amido-3,4-di-O-acetyl-1,2,6-trideoxy-1-mercapto-6-S-acetyl-6-thio-β-D-glucopyranose; and some of their properties were described.  相似文献   

10.
Methyl 5,6-dideoxy-2,3-O-isopropylidene-alpha-D-lyxo-hex-5-enofuranoside, prepared from methyl 2,3-O-isopropylidene-5,6-di-O-methylsulfonyl-alpha-D-mannofuranoside with sodium iodide in 2-butanone, was acetolyzed and the product coupled with 6-benzamidochloromercuripurine by the titanium tetrachloride method. Removal of the N-benzoyl group with pictic acid afforded 9-(2,3-di-O-acetyl-5,6-dideoxy-beta-D-xylo-hex-5-enofuranosyl)adenine. In a similar manner, methyl 5,6-dideoxy-2,3-O-isopropylidene-alpha-L-lyxo-hex-5-enofuranoside was prepared from L-mannose and converted into 9-(2,3-di-O-acetyl-5,6-dideoxy-beta-L-xylo-hex-5-enofuranosyl)adenine, further de-esterified to give the free nucleoside. 2,3:5,6-Di-O-isopropylidene-alpha-L-mannofuranosyl chloride, prepared from L-mannose, gave 9-(2,3-O-isopropylidene-alpha-L-mannofuranosyl)adenine, hydrolyzed into 9-alpha-L-mannofuranosyladenine. Treatment with methanesulfonyl chloride gave the 5',6'-dimethanesulfonate, which gave with sodium iodide in acetone the 5',6'-unsaturated nucleoside, further hydrolyzed into 9-(5,6-dideoxy-alpha-L-lyxo-hex-5-enofuranosyl)adenine.  相似文献   

11.
N-Acetyl-1-thiomuramoyl-L-alanyl-D-isoglutamine and some lipophilic analogs were synthesized from benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[D-1-(methoxycarbonyl)ethyl ]- alpha-D-glucopyranoside (1). O-Debenzoylation of 2, derived from 1 by oxidation, gave 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[D-1-(methoxycarbonyl)ethyl ]-D-glucopyranose (3). Condensation of the alkoxy-tris(dimethylamino)phosphonium chloride (4), formed from 3 by the action of carbon tetrachloride and tris(dimethylamino)phosphine, with potassium thioacetate afforded 2-acetamido-1-S-acetyl-2-deoxy-4,6-O-isopropylidene-3-O-[ D-1-(methoxycarbonyl)ethyl]-1-thio-beta-D-glucopyranose (8). Coupling of the acid 9, obtained from 8 by hydrolysis and subsequent S-acetylation, with the methyl ester of L-alanyl-D-isoglutamine gave N-[2-O-(2-acetamido-1-S-acetyl-2,3-dideoxy-4,6-O- isopropylidene-1-thio-beta-D-glucopyranose-3-yl)-D-lactoyl]-L-alan yl-D- isoglutamine methyl ester (10), which was converted, via O-deisopropylidenation, S-deacetylation, and de-esterification, into the N-acetyl-1-thiomuramoyl dipeptide. Condensation of 11 (derived from 10 by S-deacetylation) and of 12 (obtained from 10 by S-deacetylation and de-esterification) with various acyl chlorides yielded the corresponding 1-S-acyl-N-acetylmuramoyl-L-alanyl-D-isoglutamine derivatives, which were converted into the desired, lipophilic 1-thiomuramoyl dipeptides by cleavage of the isopropylidene group. Condensation of 11 with the alkyl bromides yielded the 1-S-alkyl derivatives, which were also converted, via O-deisopropylidenation and de-esterification, into the corresponding 1-S-alkylmuramoyl dipeptides. The biological activities were examined in guinea-pigs and mice.  相似文献   

12.
Isomeric S-linked 2-thioxylobiose 10, 3-thioxylobiose 17, and 4-thioxylobiose 19 were conveniently prepared by SN2 displacement of suitable triflylglycoses with the sodium salt of 2,3,4-tri-O-acetyl-1-thio-beta-D-glucopyranose, either in N,N-dimethylformamide, or in oxolan in the presence of a sodium complexing agent. Allyl 3,5-O-isopropylidene-2-O-trifluoromethanesulfonyl-beta-D-lyxofu ranoside was a convenient electrophilic precursor for 10, which was smoothly obtained after a short sequence of deprotection involving conversion to the 1-propenyl glycoside. 1,2:5,6-Di-O-isopropylidene-3-O-trifluoromethylsulfonyl-alpha-D-++ +allofuranose and 1,2,3-tri-O-benzoyl-4-O-trifluoromethylsulfonyl-beta-L-arabinop yranose were the respective precursors for 17 and 19. 4-Thioxylobiose has a highly stimulatory effect on the synthesis of enzymes of the xylanolytic system in the yeast Cryptococcus albidus when applied to the cells in the presence of the natural disaccharide inducer (1----4)-beta-D-xylobiose.  相似文献   

13.
D-Galactose was converted into the glycosylating agents 4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alpha-D-glucopyranosyl chloride (11) and the methyl beta-D-thiopyranoside 19. Condensation of 11 with 2,5-diazido-1,6-di-O-benzoyl-2,5-di-deoxy-L-iditol in the presence of mercury salts gave 24% of 2,5-diazido-3-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-1,6-di-O-benzoyl-2,5-dideoxy-L-iditol. Methyl trifluoromethanesulfonate-promoted glycosylation of 1,3-diazido-2-O-benzyl-1,3-dideoxy-5,6-O-isopropylidene-D-gulit ol with 19 in the presence of 2,6-di-tert-butyl-4-methylpyridine gave 1,3-diazido-4-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-2-O-benzyl-1,3-dideoxy-5,6-O-isopropylidene-D-gulitol (42), whereas, in the absence of base, migration of the O-isopropylidene group occurred, affording 1,3-diazido-6-O-(4-azido-2,3-di-O-benzyl-4-deoxy-6-O-propionyl-alp ha-D- glucopyranosyl)-2-O-benzyl-1,3-dideoxy-4,5-O-isopropylidene-D-gulitol in addition to 42.  相似文献   

14.
Sequential reaction of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (7) with butyllithium and 2-[2,3,5-tri-O-benzyl-4-O-(tert-butyldiphenylsilyl)-D- arabinonoyl]thio-3-nitropyridine (6) at -78 degrees gave 2,3,4,6-tetra-O-benzyl-alpha-D-glucopyranosyl 2,3,5-tri-O-benzyl-4-O-(tert-butyldiphenylsilyl)-D-arabinonate+ ++ (8; 71%, alpha:beta greater than 50:1). Ester carbonyl methylenylation, desilylation, and iodoetherification in the presence of silica gave 3,4,6-tri-O-benzyl-1-deoxy-1-iodo-(2,3,4,6-tetra-O-benzyl-alpha-D- glucopyranosyl)-beta-D-fructofuranoside (15; 44%, alpha:beta greater than 50:1). This neopentylic iodide 15 was converted into sucrose (1;80%) by free-radical substitution using TEMPO (24) followed by sodium-ammonia reduction, acetylation, and Zemplén methanolysis.  相似文献   

15.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   

16.
Methyl 2-thioglycoside derivatives of 4-, 7-, 8-, and 9-deoxy-N-acetylneuraminic acids have been prepared as glycosyl donors for the synthesis of sialoglycoconjates. Reduction of a (phenoxy)thiocarbonyl group, selectively introduced at the 4 position of methyl [2-(trimethylsilyl)ethyl 5-acetamido-3,5-dideoxy-8,9-O-isopropylidene-D- glycero-alpha-D-galacto-2-nonulopyranosid]onate (1), gave the 4-deoxy compound, which was transformed via O-deisopropylidenation, acetylation, selective removal of the 2-(trimethylsilyl)ethyl group, subsequent acetylation, and displacement of the 2-acetoxy group by a methylthio group, into methyl (methyl 5-acetamido-7,8,9-tri-O-acetyl-3,4,5-trideoxy-2-thio-D-manno-2- nonulopyranosid)onate (17). Methyl [2-(trimethylsilyl)ethyl 5-acetamido-8,9-di-O-acetyl-4-O-benzoyl- 3,5,7-trideoxy-alpha-D-galacto-2-nonulopyranosid]onate, prepared from 1 in five steps, and methyl [2-(trimethylsilyl)ethyl 5-acetamido-4,7,9-tri-O-acetyl-3,5,8-trideoxy-alpha-D-galacto-2- nonulopyranosid]onate, prepared from 1 in six steps, were converted via selective removal of the 2-(trimethylsilyl)ethyl group, O-acetylation, and displacement of the 2-acetoxy group by a methylthio group as described for 17, into the corresponding methyl 7- and 8-deoxy-2-thioglycosides. Reductive dechlorination of methyl [2-(trimethylsilyl)ethyl 5-acetamido-4,7-di-O-benzoyl-9-chloro-3,5,9-trideoxy-D-glycero-alpha-D-g alacto- 2-nonulopyranosid]onate, prepared from methyl [2-(trimethylsilyl)ethyl 5-acetamido-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosid++ +]onate by selective 9-O-tert-butyldimethylsilylation, benzoylation, removal of the 9-silyl group, and selective chlorination, gave a 9-deoxy compound. This was transformed, via O-debenzoylation, O-acetylation, selective removal of the 2(trimethylsilyl)ethyl group, 2-O-acetylation, 2-chlorination, displacement with potassium thioacetate, selective S-deacetylation, and S-methylation, into the methyl 2-thio-alpha-glycoside of 9-deoxy-N-acetylneuraminic acid.  相似文献   

17.
Condensation of N6-benzoyl-2',3'-O-isopropylideneadenosine-5'-aldehyde with nitromethane followed by acid catalyzed acetylation and borohydride reduction leads to N6-benzoyl-9-(5,6-dideoxy-2,3-O-isopropylidene-6-nitro-beta-D-ribo-hexofuranosyl)adenine (4). A second nitroaldol condensation between 4 and N-benzyloxycarbonly-L-aspartic acid-beta-semialdehyde alpha-benzyl ester (5) followed by acetylation and borohydride reduction leads to a fully protected 6'-nitro modification of sinefungin and its C6'-epimer (7). Hydrolysis of the acetonide followed by sequential reduction of the benzyl derived protecting groups and the nitro group and debenzoylation leads to a modest yield of a 3:1 mixture of sinefungin (1) and 6'-episinefungin which can only be separated by analytical ion exchange chromatography.  相似文献   

18.
Treatment of 1,6:2,5-dianhydro-3,4-di-O-methanesulfonyl-1-thio-D-glucitol in methanol with sodium hydroxide afforded 1,6:2,5:3,4-trianhydro-1-thio-allitol, 1,4:2,5-dianhydro-6-methoxy-1-thio-D-galactitol, 1,6:2,5-dianhydro-4-O-methyl-1 -thio-D-glucitol, 1 ,6:2,5-dianhydro-3-O-methanesulfonyl-1 -thio-D-glucitol and 1 ,6:2,5-dianhydro-4-deoxy-1-thio-D-erythro-hex-3-ulose (14) in 5, 4, 28, 5.5 and 41% yield, respectively. Formation of these derivatives can be explained via a common sulfonium intermediate. Reduction of 14 with sodium borohydride and subsequent acetylation afforded 3-O-acetyl-1,6:2,5-dianhydro-4-deoxy-1-thio-D-xylo-hexitol, the absolute configuration of which was proved by X-ray crystallography. The 1,6:2,5-dianhydro-1-thio-D-hexitol derivatives in which the free OH groups were protected by acetylation, methylation or mesylation were converted by a Pummerer reaction of their sulfoxides into the corresponding 1-O-acetyl hexoseptanose derivatives which were used as donors for the glycosidation of 4-cyano- and 4-nitrobenzenethiol, respectively. The Pummerer reaction of 1,6:2,5-dianhydro-4-deoxy-3-O-methyl-1-thio-D-xylo-hexitol S-oxide gave, besides 1-O-acetyl-2,5-anhydro-3-deoxy-4-O-methyl-6-thio-alpha-L- (23) and 1-O-acetyl-2,5-anhydro-4-deoxy-3-O-methyl-6-thio-alpha-D-xylo-hexoseptanose (25), 1-O-acetyl-4-deoxy-2,6-thioanhydro-D-lyxo-hexopyranose, formed in a rearrangement reaction. The same rearrangement took place, when a mixture of 23 and 25 was used as donor in the glycosidation reaction with 4-cyanobenzenethiol, applying trimethylsilyl triflate as promoter. The oral antithrombotic activity of the obtained alpha-thioglycosides was determined in rats, using Pescador's model.  相似文献   

19.
Starting from 1,2,4-tri-O-acetyl-3,6-anhydro-alpha-d-galactopyranose, 4-O-acetyl-3,6-anhydro-1,2-O-(1-cyanoethylidene)-alpha-d-galactopyranose (7) was synthesized by treatment with cyanotrimethylsilane. Additionally, 3,4-di-O-acetyl-1,2-O-(1-cyanoethylidene)-6-O-tosyl-alpha-d-galactopyranose was prepared from the corresponding bromide and both cyanoethylidene derivatives were used as donors in glycosylation reactions. The coupling with benzyl 2,4,6-tri-O-acetyl-3-O-trityl-beta-d-galactopyranoside provided exclusively the beta-linked disaccharides in approximately 30% yield. The more reactive methyl 2,3-O-isopropylidene-4-O-trityl-alpha-l-rhamnopyranoside gave with donors 3 and 7 the corresponding disaccharides in nearly 60% yield. Furthermore, the synthesis of 3,6-anhydro-4-O-trityl-1,2-O-[1-(endo-cyano)ethylidene]-alpha-d-galactopyranose, which can be used as a monomer for polycondensation reaction is described.  相似文献   

20.
1,6-Anhydro-3,4-O-isopropylidene-1-thio-D-mannitol was converted into its sulfoxide which after hydrolysis, acetylation and subsequent Pummerer rearrangement gave the penta-O-acetyl-1-thio-D-mannoseptanose anomers in excellent yield. This anomeric mixture was used as donor for the glycosylation of 4-nitro- and 4-cyanobenzenethiol in the presence of boron trifluoride etherate and trimethylsilyl triflate, respectively, to yield the corresponding thioseptanosides in high yield. The same strategy was applied for the synthesis of the corresponding L-idothioseptanosides using 1,6-anhydro-3,4-O-isopropylidene-1-thio-L-iditol as starting material. The penta-O-acetyl-D-glucothioseptanose donors could not be synthesised the same way, as the Pummerer reaction of the corresponding tetra-O-acetyl-1,6-thioanhydro-1-thio-D-glucitol sulfoxides led to an inseparable mixture of the corresponding L-gulo- and D-glucothioseptanose anomers. Therefore, D-glucose diethyl dithioacetal was converted via its 2,3,4,5-tetra-O-acetyl-6-S-acetyl derivative into an anomeric mixture of its 6-thio-septanose and -furanose peracetates which could be separated by column chromatography. Condensation of the 6-thio-glucoseptanose peracetates with 4-cyano- and 4-nitrobenezenethiol in the presence of boron trifluoride etherate afforded anomeric mixtures of the corresponding thioseptanosides. The D-manno-, L-ido- and D-glucothioseptanosides obtained after Zemplén deacetylation of these mixtures were tested for their oral antithrombotic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号