首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thomas Bals  Silke Funke 《FEBS letters》2010,584(19):4138-4144
The chloroplast signal recognition particle (cpSRP) and its receptor, cpFtsY, posttranslationally target the nuclear-encoded light-harvesting chlorophyll-binding proteins (LHCPs) to the translocase Alb3 in the thylakoid membrane. In this study, we analyzed the interplay between the cpSRP pathway components, the substrate protein LHCP and the translocase Alb3 by using in vivo and in vitro techniques. We propose that cpSRP43 is crucial for the binding of LHCP-loaded cpSRP and cpFtsY to Alb3. In addition, our data suggest that a direct interaction between Alb3 and LHCP contributes to the formation of this complex.

Structured summary

MINT-7992851: Alb3 (uniprotkb:Q8LBP4) physically interacts (MI:0915) with cpSRP43 (uniprotkb:O22265) by two hybrid (MI:0018)MINT-7992897: cpSRP43 (uniprotkb:O22265) and Alb3 (uniprotkb:Q8LBP4) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7993251: SRP43 (uniprotkb:O22265) binds (MI:0407) to LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993207: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with ftsY (uniprotkb:O80842), LHCP (uniprotkb:P27490), SRP-54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993272: Alb3 (uniprotkb:Q8LBP4) and LHCB (uniprotkb:P27490) physically interact (MI:0915) by bimolecular fluorescence complementation (MI:0809)MINT-7992960: cpSRP43 (uniprotkb:O22265) binds (MI:0407) to Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993236: Alb3 (uniprotkb:Q8LBP4) binds (MI:0407) to LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993166: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with LHCP (uniprotkb:P27490) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993118: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with Alb3 (uniprotkb:Q8LBP4), SRP-54 (uniprotkb:P37106) and LHCP (uniprotkb:P27490) by pull down (MI:0096)MINT-7993046: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with ftsY (uniprotkb:O80842), SRP-54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)MINT-7993004: cpSRP43 (uniprotkb:O22265) physically interacts (MI:0915) with SRP54 (uniprotkb:P37106) and Alb3 (uniprotkb:Q8LBP4) by pull down (MI:0096)  相似文献   

2.
Tie-Zhong Cui 《FEBS letters》2010,584(4):652-873
The length of the isoprenoid-side chain in ubiquinone, an essential component of the electron transport chain, is defined by poly-prenyl diphosphate synthase, which comprises either homomers (e.g., IspB in Escherichia coli) or heteromers (e.g., decaprenyl diphosphate synthase (Dps1) and D-less polyprenyl diphosphate synthase (Dlp1) in Schizosaccharomyces pombe and in humans). We found that expression of either dlp1 or dps1 recovered the thermo-sensitive growth of an E. coli ispBR321A mutant and restored IspB activity and production of Coenzyme Q-8. IspB interacted with Dlp1 (or Dps1), forming a high-molecular weight complex that stabilized IspB, leading to full functionality.

Structured summary:

MINT-7385426:Dlp1 (uniprotkb:Q86YH6) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385083, MINT-7385058:IspB (uniprotkb:P0AD57) and IspB (uniprotkb:P0AD57) bind (MI:0407) by blue native page (MI:0276)MINT-7385413:Dlp1 (uniprotkb:O13851) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385024:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dps1 (uniprotkb:O43091) by pull down (MI:0096)MINT-7385041:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dlp1 (uniprotkb:O13851) by pull down (MI:0096)MINT-7385388:IspB (uniprotkb:P0AD57) and Dps1 (uniprotkb:O43091) physically interact (MI:0915) by blue native page (MI:0276)  相似文献   

3.
N-methyl-d-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the brain. Here we demonstrate interactions between the NR2A and NR2B subunits of NMDARs with flotillin-1 (flot-1), a lipid raft-associated protein. When mapped, analogous regions in the far distal C-termini of NR2A and NR2B mediate binding to flot-1, and the prohibitin homology domain of flot-1 contains binding sites for NR2A and NR2B. Although NR2B can also directly bind to flot-2 via a separate region of its distal C-terminus, NMDARs were significantly more colocalized with flot-1 than flot-2 in cultured hippocampal neurons. Overall, this study defines a novel interaction between NMDARs and flotillins.

Structured summary

MINT-7013094: NR2A (uniprotkb:Q00959), NR2B (uniprotkb:Q00960) and Flot2 (uniprotkb:Q9Z2S9) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013147: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)MINT-7013189: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013033: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013178: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013197, MINT-7013210: NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) physically interact (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013002: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013117: Flot1 (uniprotkb:Q9Z1E1), NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013171: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by anti bait coimmunoprecipitation (MI:0006)MINT-7013017: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013054: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013129: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013155: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013074: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by two hybrid (MI:0018)MINT-7013162: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

4.
To further characterize the molecular events supporting the tumor suppressor activity of Scrib in mammals, we aim to identify new binding partners. We isolated MCC, a recently identified binding partner for β-catenin, as a new interacting protein for Scrib. MCC interacts with both Scrib and the NHERF1/NHERF2/Ezrin complex in a PDZ-dependent manner. In T47D cells, MCC and Scrib proteins colocalize at the cell membrane and reduced expression of MCC results in impaired cell migration. By contrast to Scrib, MCC inhibits cell directed migration independently of Rac1, Cdc42 and PAK activation. Altogether, these results identify MCC as a potential scaffold protein regulating cell movement and able to bind Scrib, β-catenin and NHERF1/2.

Structured summary

MINT-7211022: SCRIB (uniprotkb:Q14160) and MCC (uniprotkb:P23508) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7210609: SCRIB (uniprotkb:Q14160) physically interacts (MI:0915) with MCC (uniprotkb:P23508) by two hybrid (MI:0018)MINT-7210759, MINT-7210792: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with PIX beta (uniprotkb:Q14155) by pull down (MI:0096)MINT-7210883, MINT-7210820: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with MCC (uniprotkb:P23508) by anti bait coimmunoprecipitation (MI:0006)MINT-7210634, MINT-7210690, MINT-7210731: SCRIB (uniprotkb:Q14160) physically interacts (MI:0914) with MCC (uniprotkb:P23508) by pull down (MI:0096)MINT-7211267: E6 (uniprotkb:P06463) physically interacts (MI:0915) with SCRIB (uniprotkb:Q14160), SNX27 (uniprotkb:Q96L92), UTRN (uniprotkb:P46939), CASK (uniprotkb:O14936), DMD (uniprotkb:P11532) and Dlg (uniprotkb:Q12959) by pull down (MI:0096)MINT-7211237: MCC (uniprotkb:P23508) physically interacts (MI:0915) with SCRIB (uniprotkb:Q14160), EZR (uniprotkb:P15311), SNX27 (uniprotkb:Q96L92), NHERF1 (uniprotkb:O14745) and NHERF2 (uniprotkb:Q15599) by pull down (MI:0096)  相似文献   

5.
S100 proteins interact with the transactivation domain and the C-terminus of p53. Further, S100B has been shown to interact with MDM2, a central negative regulator of p53. Here, we show that S100B bound directly to the folded N-terminal domain of MDM2 (residues 2-125) by size exclusion chromatography and surface plasmon resonance experiments. This interaction with MDM2 (2-125) is a general feature of S100 proteins; S100A1, S100A2, S100A4 and S100A6 also interact with MDM2 (2-125). These interactions with S100 proteins do not result in a ternary complex with MDM2 (2-125) and p53. Instead, we observe the ability of a subset of S100 proteins to disrupt the extent of MDM2-mediated p53 ubiquitylation in vitro.

Structured summary

MINT-7905256: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A6 (uniprotkb:P06703) by surface plasmon resonance (MI:0107)MINT-7905063: MDM2 (uniprotkb:Q00987) and s100A1 (uniprotkb:P23297) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905376: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) physically interact (MI:0915) by competition binding (MI:0405)MINT-7905130: s100A6 (uniprotkb:P06703) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905207: s100A6 (uniprotkb:P06703) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905043: s100B (uniprotkb:P04271) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905196: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905358: p53 (uniprotkb:P04637) and s100A4 (uniprotkb:P26447) physically interact (MI:0915) by fluorescence polarization spectroscopy (MI:0053)MINT-7905220: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100B (uniprotkb:P04271) by surface plasmon resonance (MI:0107)MINT-7905104: s100A4 (uniprotkb:P26447) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905229: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A1 (uniprotkb:P23297) by surface plasmon resonance (MI:0107)MINT-7905317, MINT-7905162: s100B (uniprotkb:P04271) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905238: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A2 (uniprotkb:P29034) by surface plasmon resonance (MI:0107)MINT-7905174, MINT-7905308: s100A1 (uniprotkb:P23297) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905247: MDM2 (uniprotkb:Q00987) binds (MI:0407) to s100A4 (uniprotkb:P26447) by surface plasmon resonance (MI:0107)MINT-7905090: s100A2 (uniprotkb:P29034) and MDM2 (uniprotkb:Q00987) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905142, MINT-7905326: MDM2 (uniprotkb:Q00987) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)MINT-7905185, MINT-7905347: s100A2 (uniprotkb:P29034) and p53 (uniprotkb:P04637) bind (MI:0407) by molecular sieving (MI:0071)  相似文献   

6.
Proliferating cell nuclear antigen (PCNA) is involved in a wide range of functions in the nucleus. However, a substantial amount of PCNA is also present in the cytoplasm, although their function is unknown. Here we show, through Far-Western blotting and mass spectrometry, that PCNA is associated with several cytoplasmic oncoproteins, including elongation factor, malate dehydrogenase, and peptidyl-prolyl isomerase. Surprisingly, PCNA is also associated with six glycolytic enzymes that are involved in the regulation of steps 4-9 in the glycolysis pathway.

Structured summary

MINT-7995351: G3P (uniprotkb:P04406) and PCNA (uniprotkb:P12004) colocalize (MI:0403) by fluorescencemicroscopy (MI:0416)MINT-7995334: ENOA (uniprotkb:P06733) and PCNA (uniprotkb:P12004) colocalize (MI:0403) by fluorescencemicroscopy (MI:0416)MINT-7995368: ALDOA (uniprotkb:P04075) and PCNA (uniprotkb:P12004) colocalize (MI:0403) by fluorescencemicroscopy (MI:0416)MINT-7995141: G3P (uniprotkb:P04406) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995182: ENOA (uniprotkb:P06733) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995132: G3P (uniprotkb:P04406) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995228: PRDX6 (uniprotkb:P30041) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995220: CAH2 (uniprotkb:P00918) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995114: Triosephosphateisomerase (uniprotkb:P60174) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995244: K2C7 (uniprotkb:P08729) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995252: ANXA2 (uniprotkb:P07355) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995122: Triosephosphateisomerase (uniprotkb:P60174) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995093: ALDOA (uniprotkb:P04075) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995148: PGK1 (uniprotkb:P00558) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995158: PGAM1 (uniprotkb:P18669) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995166: PGAM1 (uniprotkb:P18669) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995105: ALDOA (uniprotkb:P04075) binds (MI:0407) to PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995260: PPIA (uniprotkb:P62937) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995173: ENOA (uniprotkb:P06733) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995268: EF1A (uniprotkb:P68104) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995236: MDHM (uniprotkb:P40926) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995189: RSSA (uniprotkb:P08865) physicallyinteracts (MI:0915) with PCNA (uniprotkb:P12004) by farwesternblotting (MI:0047)MINT-7995282: PCNA (uniprotkb:P12004) physicallyinteracts (MI:0915) with ALDOA (uniprotkb:P00883) and G3P (uniprotkb:P46406) by antibaitcoimmunoprecipitation (MI:0006).  相似文献   

7.
8.
The mechanism underlying the protein-protein interaction of hnRNP K and PRMT family proteins is unclear. We examined and confirmed the arginine methylation of hnRNP K protein by PRMT1, not CARM1, via their direct binding. We also studied hnRNP K protein complexes containing CARM1, as well as PRMT1, using co-immunoprecipitation analysis. PRMT family proteins might be involved in the regulation of hnRNP K functions in nuclear receptor coactivator, transactivation, and p21 gene and protein expressions. We believe these observations will help provide insights into the regulation of hnRNP K protein functions via the recruitment of its associated proteins, including its arginine methylation-modifying proteins.

Structured summary

MINT-6803853: hnRPK, (uniprotkb:P61978) binds (MI:0407) to PRMT1 (uniprotkb:Q99873) by pull down (MI:0096)MINT-6803884: hnRPK, (uniprotkb:P61978) physically interacts (MI:0218) with CARM1 (uniprotkb:Q86X55) by anti tag coimmunoprecipitation (MI:0007)MINT-6803869: hnRPK, (uniprotkb:P61978) physically interacts (MI:0218) with PRMT1 (uniprotkb:Q99873) by anti tag coimmunoprecipitation (MI:0007)MINT-6803939: hnRPK, (uniprotkb:P61978) binds (MI:0407) to PRMT2 (uniprotkb:P55345) by pull down (MI:0096)MINT-6803929: hnRPK, (uniprotkb:P61978) binds (MI:0407) to RMT (uniprotkb:P38074) by pull down (MI:0096)MINT-6803896: hnRPK, (uniprotkb:P61978) binds (MI:0407) to PRMT3 (uniprotkb:O60678) by pull down (MI:0096)MINT-6803834: PRMT1 (uniprotkb:Q99873) methylates (MI:0213) hnRPK, (uniprotkb:P61978) by methyltransferase assay (MI:0515)  相似文献   

9.
Chan CS  Chang L  Winstone TM  Turner RJ 《FEBS letters》2010,584(22):4553-4558
Redox enzyme substrates of the twin-arginine translocation (Tat) system contain a RR-motif in their leader peptide and require the assistance of chaperones, redox enzyme maturation proteins (REMPs). Here various regions of the RR-containing oxidoreductase subunit (leader peptide, full preprotein with and without a leader cleavage site, mature protein) were assayed for interaction with their REMPs. All REMPs bound their preprotein substrates independent of the cleavage site. Some showed binding to either the leader or mature region, whereas in one case only the preprotein bound its REMP. The absence of Tat also influenced the amount of chaperone-substrate interaction.

Structured summary

MINT-8047497: FdhE (uniprotkb:P13024) and FdoG (uniprotkb:P32176) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046441: HybO (uniprotkb:P69741) and HybE (uniprotkb:P0AAN1) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046375: DmsA (uniprotkb:P18775) and DmsD (uniprotkb:P69853) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046425: TorA (uniprotkb:P33225) and TorD (uniprotkb:P36662) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046393: NarJ (uniprotkb:P0AF26) and NarG (uniprotkb:P09152) physically interact (MI:0915) by two hybrid (MI:0018)MINT-8046409: NapD (uniprotkb:P0A9I5) and NapA (uniprotkb:P33937) physically interact (MI:0915) by two hybrid (MI:0018)  相似文献   

10.
《Carbohydrate research》1986,147(2):265-274
Syntheses, based on silver trifluoromethanesulfonate-promoted Koenigs-Knorr type condensations, are described of the d-glucotrioses, β-d-Glcp-(1→3)-β-d-Glcp-(1→4)-d-Glcp and β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-d-Glcp, and the d-Glucotetraoses, β-d-Glcp-(1→3)-β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-d-Glcp, β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-β-d-Glcp-(1→4)-d-Glcp, and β-d-Glcp-(1→4)-β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-d-Glcp, corresponding to the tri- and tetra-saccharide units in the linear chains of (1→4)- and (1→3)-linked β-d-glucopyranosyl residues of lichenan, and of oat and barley β-d-glucans.  相似文献   

11.
Twenty taxa of Cordyceps s. l. (belonging to three genera in the latest taxonomic system) from Cicadidae had been described by Kobayasi and Shimizu. Among them, 13 holotype specimens of Cordyceps were rediscovered from preserved specimens partially without ordering, and their registration numbers (TNS-F-number) were given: viz. (1) Elaphocordyceps inegoensis TNS-F-230289, (2) Elaphocordyceps paradoxa TNS-F-230313, (3) Elaphocordyceps toriharamontana TNS-F-230288, (4) Ophiocordyceps heteropoda TNS-F-230294, (5) Ophiocordyceps longissima TNS-F-230285, (6) Ophiocordyceps prolifica f. terminalis TNS-F-230295, (7) Ophiocordyceps pseudolongissima TNS-F-197983, (8) Ophiocordyceps takaoensis TNS-F-3026, (9) Cordyceps kanzashiana TNS-F-198015, (10) Cordyceps kobayasii Koval’ (≡C. sinclairii Kobayasi, not C. sinclairii Berk.) TNS-F-212384, (11) Cordyceps minuta TNS-F-11933, (12) Cordyceps ramosopulvinata TNS-F-197979, and (13) Cordyceps ryogamimontana TNS-F-230292. Two specimens were selected as lectotype: viz. (14) Ophiocordyceps prolifica TNS-F-230300 and (15) Ophiocordyceps yakusimensis TNS-F-230287. A paratype specimen of (16) Cordyceps pleuricapitata TNS-F-197965, and an authentic specimen of (17) Cordyceps imagamiana TNS-F-197966, were also rediscovered.  相似文献   

12.
The Plenty of SH3 domains protein (POSH) is an E3 ligase and a scaffold in the JNK mediated apoptosis, linking Rac1 to downstream components.We here describe POSH2 which was identified from a p21-activated kinase 2 (PAK2) interactor screen. POSH2 is highly homologous with other members of the POSH family; it contains four Src homology 3 (SH3) domains and a RING finger domain which confers E3 ligase activity to the protein. In addition POSH2 contains an N-terminal extension which is conserved among its mammalian counterparts. POSH2 interacts with GTP-loaded Rac1. We have mapped this interaction to a previously unrecognized partial Cdc42/Rac1-interactive binding domain.

Structured summary

MINT-7987761: POSH1 (uniprotkb:Q9HAM2) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987932: PAK2 (uniprotkb:Q13177) binds (MI:0407) to CDC42 (uniprotkb:Q07912) by solid phase assay (MI:0892)MINT-7987908: POSH1 (uniprotkb:Q9HAM2) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987880: POSH2 (uniprotkb:Q8TEJ3) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987734: POSH2 (uniprotkb:Q8TEJ3) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987779, MINT-7987804, MINT-7987824, MINT-7987838, MINT-7987853: Rac1 (uniprotkb:P63000) physically interacts (MI:0915) with POSH2 (uniprotkb:Q8TEJ3) by anti tag coimmunoprecipitation (MI:0007)MINT-7987920: PAK2 (uniprotkb:Q13177) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)  相似文献   

13.
Nbr1, a ubiquitous kinase scaffold protein, contains a PB1, and a ubiquitin-associated (UBA) domain. We show here that the nbr1 UBA domain binds to lysine-48 and -63 linked polyubiquitin-B chains. Nbr1 also binds to the autophagic effector protein LC3-A via a novel binding site. Ubiquitin-binding, but not PB1-mediated p62/SQSTM1 interaction, is required to target nbr1 to LC3 and polyubiquitin-positive bodies. Nbr1 binds additionally to proteins implicated in ubiquitin-mediated protein turnover and vesicle trafficking: ubiquitin-specific peptidases USP8, and the endosomal transport regulator p14/Robld3. Nbr1 thus contributes to specific steps in protein turnover regulation disrupted in several hereditary human diseases.

Structured summary

MINT-7034452: USP8 (uniprotkb:P40818) physically interacts (MI:0218) with NBR1 (uniprotkb:Q14596) by pull down (MI:0096)MINT-7034438: SQSTM1 (uniprotkb:Q13501) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034309: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034323: NBR1 (uniprotkb:P97432) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034233: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with USP8 (uniprotkb:P40818) by two hybrid (MI:0018)MINT-7034207: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Robld3 (uniprotkb:Q9JHS3) by two hybrid (MI:0018)MINT-7034400, MINT-7034418: NBR1 (uniprotkb:Q14596) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034167: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin B (uniprotkb:Q78XY9) by two hybrid (MI:0018)MINT-7034470: NBR1 (uniprotkb:Q14596) and USP8 (uniprotkb:P40818) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034194: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3-A (uniprotkb:Q91VR7) by two hybrid (MI:0018)MINT-7034336: SQSTM1 (uniprotkb:Q13501) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034375: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3 (uniprotkb:Q9H492) by pull down (MI:0096)MINT-7034350: NBR1 (uniprotkb:Q14596) and Ubiquitin (uniprotkb:P62988) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034181: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Tmed10 (uniprotkb:Q9D1D4) by two hybrid (MI:0018)MINT-7034220: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with ube2o (uniprotkb:Q6ZPJ3) by two hybrid (MI:0018)  相似文献   

14.
A novel acylated cyanidin 3-sambubioside-5-glucoside was isolated from the purple-violet flowers of Matthiola longipetala subsp. bicornis (Sm) P. W. Ball. (family: Brassicaceae), and determined to be cyanidin 3-O-[2-O-(2-O-(trans-feruloyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] by chemical and spectroscopic methods. In addition, two known acylated cyanidin 3-sambubioside-5-glucosides, cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] and cyanidin 3-O-[2-O-(β-xylopyranosyl)-6-O-(trans-feruloyl)-β-glucopyranoside]-5-O-[6-O-(malonyl)-β-glucopyranoside] were identified in the flowers.  相似文献   

15.
Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin’s effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues.

Structured summary

MINT-7714817: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRb (uniprotkb:P48357-1) by anti tag co-immunoprecipitation (MI:0007)MINT-7714785: LEPRc (uniprotkb:P48357-2) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by bioluminescence resonance energy transfer (MI:0012)MINT-7714951, MINT-7714744: LEPRa (uniprotkb:P48357-3) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by bioluminescence resonance energy transfer (MI:0012)MINT-7714859: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by anti tag co-immunoprecipitation (MI:0007)MINT-7714885, MINT-7714672: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRb (uniprotkb:P48357-1) by bioluminescence resonance energy transfer (MI:0012)MINT-7714835: LEPRa (uniprotkb:P48357-3) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by anti tag co-immunoprecipitation (MI:0007)MINT-7714914, MINT-7714723, MINT-7714759: LeprB (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRa (uniprotkb:P48357-3) by bioluminescence resonance energy transfer (MI:0012)MINT-7714703, MINT-7714936, MINT-7714772: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by bioluminescence resonance energy transfer (MI:0012)MINT-7714872: LEPRb (uniprotkb:P48357-1) physically interacts (MI:0915) with LEPRc (uniprotkb:P48357-2) by anti tag co-immunoprecipitation (MI:0007)  相似文献   

16.
3种海拔高度茶园中2种害虫与其天敌间的数量和空间关系   总被引:4,自引:0,他引:4  
用灰色系统分析法和生态位分析法对安徽省潜山县高、中、低3种海拔茶园中2种主要害虫与其天敌在数量和空间上的相互关系进行研讨,经综合排序得出:低海拔茶园假眼小绿叶蝉的主要天敌是锥腹肖蛸、茶色新圆蛛和鞍型花蟹蛛,中海拔茶园为八点球腹蛛、锥腹肖蛸和鞍型花蟹蛛,高海拔茶园为锥腹肖蛸、茶色新圆蛛和草间小黒蛛。低海拔茶园柑橘粉虱的主要天敌是八点球腹蛛、茶色新圆蛛和异色瓢虫,中海拔茶园为鞍型花蟹蛛、八点球腹蛛和茶色新圆蛛,高海拔茶园为锥腹肖蛸、八点球腹蛛和斑管巢蛛。上述几种天敌与2种主要害虫在数量和空间上有显著的追随关系。不同海拔高度茶园中2种主要害虫的主要天敌种类存在差异。  相似文献   

17.
An up-to-date checklist of the Italian Dermestidae is provided. The presence of 95 species in Italy is confirmed, while further 5 species (Dermestes (Dermestes) vorax Motschulsky, 1860, Thorictuspilosus Peyron, 1857, T. wasmanni Reitter, 1895, Attagenus (Attagenus) simonis Reitter, 1881 and Globicornis (G.) breviclavis (Reitter, 1878)) and 1 subspecies (A. (A.) tigrinus pulcher Faldermann, 1835) are excluded from the Italian fauna.Attagenus (Attagenus) calabricus Reitter, 1881 and A. (A.) lobatus Rosenhauer, 1856 are for the first time recorded from Abruzzi and Tuscany respectively; A. (A.) silvaticus Zhantiev, 1976 is recorded for the first time from mainland Italy (Apulia); Anthrenus (Anthrenus) angustefasciatus Ganglbauer, 1904 is new to northern Italy (Friuli-Venezia Giulia), central Italy (Tuscany), Apulia and Basilicata; A. (A.) munroi Hinton, 1943 is new to central Italy (Elba Island); A. (A.) delicatus Kiesenwetter, 1851 is for the first time recorded from Apulia; Globicornis (Globicornis) fasciata (Fairmaire & Brisout de Barneville, 1859) is new to southern Italy (Basilicata); G. (Hadrotoma) sulcata (C.N.F. Brisout de Barneville, 1866) is for the first time recorded from central Italy (Abruzzi), Campania and Sicily, whileTrogoderma inclusum LeConte, 1854 is new to Apulia.Seven species (Dermestes (Dermestes) peruvianus Laporte de Castelnau, 1840, D. (Dermestinus) carnivorus Fabricius, 1775, D. (Dermestinus) hankae Háva, 1999, D. (Dermestinus) intermedius intermedius Kalík, 1951, D. (Dermestinus) szekessyi Kalík, 1950, Anthrenus (Anthrenops) coloratus Reitter, 1881 and Trogodermaangustum (Solier, 1849)) recently recorded from Italy (without further details) are discussed.The lectotype and a paralectotype are designated forAttagenus (A.) calabricus Reitter, 1881 from Calabria.Attagenus pellio (Linnaeus, 1758) var. pilosissimus Roubal, 1932 is removed from synonymy with A. (A.) pellio and recognized as a valid species (stat. prom.); it is known from Lombardy, Apulia and Calabria.  相似文献   

18.
The KRAB-type zinc-finger protein Apak (ATM and p53 associated KZNF protein) specifically suppresses p53-mediated apoptosis. Upon DNA damage, Apak is phosphorylated and inhibited by ATM kinase, resulting in p53 activation. However, how Apak is regulated in response to oncogenic stress remains unknown. Here we show that upon oncogene activation, Apak is inhibited in the tumor suppressor ARF-dependent but ATM-independent manner. Oncogene-induced ARF protein directly interacts with Apak and competes with p53 to bind to Apak, resulting in Apak dissociation from p53. Thus, Apak is differentially regulated in the ARF and ATM-dependent manner in response to oncogenic stress and DNA damage, respectively.

Structured summary

MINT-7989670: p53 (uniprotkb:P04637) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989812: HDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989603, MINT-7989626: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989653: ARF (uniprotkb:Q8N726-1) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989686, MINT-7989705, MINT-7989747:APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7989724: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0914) with ARF (uniprotkb:Q8N726-1) and p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)MINT-7989635: ARF (uniprotkb:Q8N726-1) and APAK (uniprotkb:Q8TAQ5) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7989584, MINT-7989773: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

19.
Macropinocytosis is regulated by Abl kinase via an unknown mechanism. We previously demonstrated that Abl kinase activity is, itself, regulated by Abi1 subsequent to Abl kinase phosphorylation of Abi1 tyrosine 213 (pY213) [1]. Here we show that blocking phosphorylation of Y213 abrogated the ability of Abl to regulate macropinocytosis, implicating Abi1 pY213 as a key regulator of macropinocytosis. Results from screening the human SH2 domain library and mapping the interaction site between Abi1 and the p85 regulatory domain of PI-3 kinase, coupled with data from cells transfected with loss-of-function p85 mutants, support the hypothesis that macropinocytosis is regulated by interactions between Abi1 pY213 and the C-terminal SH2 domain of p85—thereby linking Abl kinase signaling to p85-dependent regulation of macropinocytosis.

Structured summary

MINT-7908602: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to SHIP2 (uniprotkb:O15357) by array technology (MI:0008)MINT-7908362: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Emt (uniprotkb:Q08881) by array technology (MI:0008)MINT-7908235: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Lyn (uniprotkb:P07948) by array technology (MI:0008)MINT-7908075: Abi1 (uniprotkb:Q8IZP0)binds (MI:0407) to Fgr (uniprotkb:P09769) by array technology (MI:0008)MINT-7908330, MINT-7908522: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Vav1 (uniprotkb:P15498) by array technology (MI:0008)MINT-7907962: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fyn (uniprotkb:P06241) by array technology (MI:0008)MINT-7908203: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Src (uniprotkb:P12931) by array technology (MI:0008)MINT-7908570: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to SHP-2 (uniprotkb:P35235) by array technology (MI:0008)MINT-7908187, MINT-7908586: Abi1(uniprotkb:Q8IZP0) binds (MI:0407) to Gap (uniprotkb:P20936) by array technology (MI:0008)MINT-7907981, MINT-7907995: Abi1 (uniprotkb:Q8IZP0) physically interacts (MI:0915) with p85a (uniprotkb:P26450) by anti tag coimmunoprecipitation (MI:0007)MINT-7908251: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to PLCG1 (uniprotkb:P19174) by array technology (MI:0008)MINT-7908346: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Grb2 (uniprotkb:P62993) by array technology (MI:0008)MINT-7907945: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Abl (uniprotkb:P00519) by array technology (MI:0008)MINT-7908474: Abi1 (uniprotkb:Q8IZP0)binds (MI:0407) to p85b (uniprotkb:O00459) by array technology (MI:0008)MINT-7908107: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Hck (uniprotkb:P08631) by array technology (MI:0008)MINT-7908011: p85a (uniprotkb:P26450) physically interacts (MI:0915) with Abi1 (uniprotkb:Q8IZP0) by pull down (MI:0096)MINT-7908155: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to FynT (uniprotkb:P06241-2) by array technology (MI:0008)MINT-7908283, MINT-7908490: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to p55g (uniprotkb:Q92569) by array technology (MI:0008)MINT-7907929, MINT-7907815, MINT-7907832, MINT-7907865, MINT-7907897, MINT-7907913, MINT-7907881, MINT-7907848: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to p85a (uniprotkb:P27986) by array technology (MI:0008)MINT-7908059: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Frk (uniprotkb:P42685) by array technology (MI:0008)MINT-7908378: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblC (uniprotkb:Q9ULV8) by array technology (MI:0008)MINT-7908618: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblA (uniprotkb:B5MC15) by array technology (MI:0008)MINT-7908139, MINT-7908538: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Nap4 (uniprotkb:O14512) by array technology (MI:0008)MINT-7908426: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CblB (uniprotkb:Q13191) by array technology (MI:0008)MINT-7908506: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Crk (uniprotkb:P46108) by array technology (MI:0008)MINT-7908554: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to mAbl (uniprotkb:P00520) by array technology (MI:0008)MINT-7908043, MINT-7908394: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Vav2 (uniprotkb:P52735) by array technology (MI:0008)MINT-7908458: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to mSck/ShcB (uniprotkb:Q8BMC3) by array technology (MI:0008)MINT-7908091: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Yes (uniprotkb:P07947) by array technology (MI:0008)MINT-7908219: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Src (uniprotkb:P00523) by array technology (MI:0008)MINT-7908123: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fer (uniprotkb:P16591) by array technology (MI:0008)MINT-7908410: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to CrkL (uniprotkb:P46109) by array technology (MI:0008)MINT-7908314, MINT-7908442: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Arg (uniprotkb:P42684) by array technology (MI:0008)MINT-7908299: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to PLCG1 (uniprotkb:P10686) by array technology (MI:0008)MINT-7908171: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Fes (uniprotkb:P07332) by array technology (MI:0008)MINT-7908027: Abi1 (uniprotkb:Q8IZP0) binds (MI:0407) to Lck (uniprotkb:P06239) by array technology (MI:0008)  相似文献   

20.
Four anthocyanins, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside)-5-O-β-glucopyranoside, cyanidin 3-O-(2″-(5?-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside), cyanidin 3-O-(2″-(5?-(E-caffeoyl)-β-apiofuranosyl)-β-xylopyranoside) and cyanidin 3-O-(2″-(5?-(E-feroyl)-β-apiofuranosyl)-β-xylopyranoside) were isolated from leaves of African milk bush, (Synadeniumgrantii Hook, Euphorbiaceae) together with the known cyanidin 3-O-β-xylopyranoside-5-O-β-glucopyranoside and cyanidin 3-O-β-xyloside. The four former pigments are the first reported anthocyanins containing the monosaccharide apiose, and the three 5?-cinnamoyl derivative-2″-(β-apiosyl)-β-xyloside subunits have previously not been reported for any compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号