首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism   总被引:21,自引:0,他引:21  
The Rho family GTPases Cdc42, Rac1 and RhoA control many of the changes in the actin cytoskeleton that are triggered when growth factor receptors and integrins bind their ligands [1] [2]. Rac1 and Cdc42 stimulate the formation of protrusive structures such as membrane ruffles, lamellipodia and filopodia. RhoA regulates contractility and assembly of actin stress fibers and focal adhesions. Although prolonged integrin engagement can stimulate RhoA [3] [4] [5], regulation of this GTPase by early integrin-mediated signals is poorly understood. Here we show that integrin engagement initially inactivates RhoA, in a c-Src-dependent manner, but has no effect on Cdc42 or Rac1 activity. Additionally, early integrin signaling induces activation and tyrosine phosphorylation of p190RhoGAP via a mechanism that requires c-Src. Dynamic modulation of RhoA activity appears to have a role in motility, as both inhibition and activation of RhoA hinder migration [6] [7] [8]. Transient suppression of RhoA by integrins may alleviate contractile forces that would otherwise impede protrusion at the leading edge of migrating cells.  相似文献   

2.
Cadherin engagement inhibits RhoA via p190RhoGAP   总被引:9,自引:0,他引:9  
Cadherins are transmembrane receptors that mediate cell-cell adhesion in epithelial cells. A number of changes occur during cadherin-mediated junction formation, one of which is a rearrangement of the actin cytoskeleton. Key regulators of actin cytoskeletal dynamics in cells are the Rho family of GTPases. We have demonstrated in previous studies that cadherin signaling suppresses RhoA activity and activates Rac1. The signaling events downstream of cadherins that modulate the activity of Rho family proteins remain unknown. Here we have identified a pathway by which RhoA becomes inactivated by cadherins. To determine whether cadherins regulate RhoA through activation of a GTPase-activating protein (GAP) for RhoA, we used constitutively active RhoA to isolate activated GAPs. Using this assay, we have identified the RhoA-specific GAP, p190RhoGAP, downstream from engaged cadherins. We found that cadherin engagement induced tyrosine phosphorylation of p190RhoGAP and increased its binding to p120RasGAP. The increased precipitation of p190RhoGAP with 63LRhoA was blocked by addition of PP2 suggesting that Src family kinases are required downstream from cadherin signaling. The inhibition of RhoA activity by cadherins was antagonized by expression of a dominant negative p190RhoGAP. Taken together, these data demonstrate that p190RhoGAP activity is critical for RhoA inactivation by cadherins.  相似文献   

3.
4.
Oncogenic EGFRvIII is a naturally occurring oncoprotein and is expressed in about 40-50% of human glioblastomas, particularly those that arise de novo. To understand the molecular mechanisms by which this oncoprotein alters transforming phenotypes, and since our previous work indicated that SHP-2 protein tyrosine phosphatase activity modulated EGFRvIII activation and downstream signaling, we examined whether SHP-2 plays a role in EGFRvIII-induced oncogenesis by using both PTEN-deficient U87MG.EGFRvIII and PTEN-intact LN229.EGFRvIII cells. Inhibition of SHP-2 expression by Shp-2 siRNA inhibited cell growth, transformation and altered morphology of these EGFRvIII transformed GBM cells. Ectopic expression of a PTPase-inactive form of SHP-2, SHP-2 C459S, but not its wild-type SHP-2 or either of two SH2 domain mutants, abrogated transformation of EGFRvIII-expressing glioblastomas in soft agar and in nude mice. SHP-2 C459S cells grew slower and exhibited a more flattened morphology with more organized actin stress fibers under both full growth and low serum conditions. Furthermore, shp-2+/− and −/− mouse embryonic fibroblasts (MEFs) could not be transformed by EGFRvIII while shp-2+/+ MEFs displayed a fully transformed phenotype upon introduction of EGFRvIII, again indicating a requirement for functional SHP-2 in EGFRvIII transformation. Moreover, the SHP-2 PTPase activity inhibitor NSC-87877 inhibited endogenous SHP-2 activity, Erk phosphorylation and transformation in both GBM cell lines. EGFRvIII expression recruited SHP-2 to the receptor complex to transduce signals and also increased SHP-2 phosphorylation at Tyr542. Inhibition of EGFRvIII-induced cell growth and transformation by SHP-2 C459S or shp-2 siRNA was mediated by its ability to block cell cycle progression at different phases in these GBM cells. These data indicate that differential activation of SHP-2 phosphorylation at Tyr542 in these two GBM cell lines likely results in increased different PTPase activity and distinct mechanisms of cell cycle progression and SHP-2, in particular its PTPase activity, plays a critical role in EGFRvIII-mediated transformation.  相似文献   

5.
Duan HF  Qu CK  Zhang QW  Yu WM  Wang H  Wu CT  Wang LS 《Cellular signalling》2006,18(11):2049-2055
Shp-2, a ubiquitously expressed protein tyrosine phosphatase containing two Src homology 2 domains, plays an important role in integrating signaling from the cell surface receptors to intracellular signaling mechanisms. Previous studies have demonstrated that the Shp-2 is involved in hepatocyte growth factor (HGF)-induced cell scattering. Here we report that Shp-2 is required for the HGF-induced activation of sphingosine kinase-1 (SPK1), a highly conserved lipid kinase that plays an important role in cell migration. Loss-of-function mutation of Shp-2 did not affect the expression of SPK1, but resulted in its inactivation and the blockage of HGF-induced migration in embryonic fibroblasts. Reintroduction of functional wild type (WT) Shp-2 into the mutant cells partially restored SPK1 activation, and overexpression of SPK1 in these mutant cells enhanced HGF-induced cell migration. Inhibition of expression or activity of SPK1 in WT cells markedly decreased intracellular S1P levels and HGF-induced cell migration. Furthermore, we found that Shp-2 co-immunoprecipitated with SPK1 and c-Met in embryonic fibroblasts. These studies suggest that Shp-2 is an SPK1-interacting protein and that it plays an indispensable role in HGF-induced SPK1 activation.  相似文献   

6.
Activation of the thiol protease calpain results in proteolysis of focal adhesion-associated proteins and severing of cytoskeletal-integrin links. We employed a commonly used inhibitor of calpain, calpeptin, to examine a role for this protease in the reorganization of the cytoskeleton under a variety of conditions. Calpeptin induced stress fiber formation in both forskolin-treated REF-52 fibroblasts and serum-starved Swiss 3T3 fibroblasts. Surprisingly, calpeptin was the only calpain inhibitor of several tested with the ability to induce these effects, suggesting that calpeptin may act on targets besides calpain. Here we show that calpeptin inhibits tyrosine phosphatases, enhancing tyrosine phosphorylation particularly of paxillin. Calpeptin preferentially inhibits membrane-associated phosphatase activity. Consistent with this observation, in vitro phosphatase assays using purified glutathione S-transferase fusion proteins demonstrated a preference for the transmembrane protein-tyrosine phosphatase-alpha over the cytosolic protein-tyrosine phosphatase-1B. Furthermore, unlike wide spectrum inhibitors of tyrosine phosphatases such as pervanadate, calpeptin appeared to inhibit a subset of phosphatases. Calpeptin-induced assembly of stress fibers was inhibited by botulinum toxin C3, indicating that calpeptin is acting on a phosphatase upstream of the small GTPase Rho, a protein that controls stress fiber and focal adhesion assembly. Not only does this work reveal that calpeptin is an inhibitor of protein-tyrosine phosphatases, but it suggests that calpeptin will be a valuable tool to identify the phosphatase activity upstream of Rho.  相似文献   

7.
The integrin family of cell surface receptors mediates cell adhesion to components of the extracellular matrix (ECM). Integrin engagement with the ECM initiates signaling cascades that regulate the organization of the actin-cytoskeleton and changes in gene expression. The Rho subfamily of Ras-related low-molecular-weight GTP-binding proteins and several protein tyrosine kinases have been implicated in mediating various aspects of integrin-dependent alterations in cell homeostasis. Focal adhesion kinase (FAK or pp125FAK) is one of the tyrosine kinases predicted to be a critical component of integrin signaling. To elucidate the mechanisms by which FAK participates in integrin-mediated signaling, we have used expression cloning to identify cDNAs that encode potential FAK-binding proteins. We report here the identification of a cDNA that encodes a new member of the GTPase-activating protein (GAP) family of GTPase regulators. This GAP, termed Graf (for GTPase regulator associated with FAK), binds to the C-terminal domain of FAK in an SH3 domain-dependent manner and preferentially stimulates the GTPase activity of the GTP-binding proteins RhoA and Cdc42. Subcellular localization studies using Graf-transfected chicken embryo cells indicates that Graf colocalizes with actin stress fibers, cortical actin structures, and focal adhesions. Graf mRNA is expressed in a variety of avian tissues and is particularly abundant in embryonic brain and liver. Graf represents the first example of a regulator of the Rho family of small GTP-binding proteins that exhibits binding to a protein tyrosine kinase. We suggest that Graf may function to mediate cross talk between the tyrosine kinases such as FAK and the Rho family GTPase that control steps in integrin-initiated signaling events.  相似文献   

8.
We have previously shown that activation of extracellular signal-regulated kinase (Erk) by epidermal growth factor (EGF) treatment was significantly decreased in mouse fibroblast cells expressing a mutant Shp-2 molecule lacking 65 amino acids in the SH2-N domain, Shp-2(Delta46-110). To address the molecular mechanism for the positive role of Shp-2 in mediating Erk induction, we evaluated the activation of signaling components upstream of Erk in Shp-2 mutant cells. EGF-stimulated Ras, Raf, and Mek activation was significantly attenuated in Shp-2 mutant cells, suggesting that Shp-2 acts to promote Ras activation or to suppress the down-regulation of activated Ras. Biochemical analyses indicate that upon EGF stimulation, Shp-2 is recruited into a multiprotein complex assembled on the Gab1 docking molecule and that Shp-2 seems to exert its biological function by specifically dephosphorylating an unidentified molecule of 90 kDa in the complex. The mutant Shp-2(Delta46-110) molecule failed to participate in the Gab1-organized complex for dephosphorylation of p90, correlating with a defective activation of the Ras-Raf-Mek-Erk cascade in EGF-treated Shp-2 mutant cells. Evidence is also presented that Shp-2 does not appear to modulate the signal relay from EGF receptor to Ras through the Shc, Grb2, and Sos proteins. These results begin to elucidate the mechanism of Shp-2 function downstream of a receptor tyrosine kinase to promote the activation of the Ras-Erk pathway, with potential therapeutic applications in cancer treatment.  相似文献   

9.
RhoA is known to participate in cytoskeletal remodeling events through several signaling pathways, yet the precise mechanism of its activation remains unknown. Here, we provide the first evidence that dematin functions upstream of RhoA and regulates its activation. Primary mouse embryonic fibroblasts were generated from a dematin headpiece domain null (HPKO) mouse, and the visualization of the actin morphology revealed a time-dependent defect in stress fiber formation, membrane protrusions, cell motility, and cell adhesion. Rescue experiments using RNA interference and transfection assays revealed that the observed phenotypes are due to a null effect and not a gain of function in the mutant fibroblasts. In vivo wounding of adult HPKO mouse skin showed a decrease in wound healing (reepithelialization and granulation) compared to the wild-type control. Biochemical analysis of the HPKO fibroblasts revealed a sustained hyperphosphorylation of focal adhesion kinase (FAK) at tyrosine 397 as well as a twofold increase in RhoA activation. Inhibition of both RhoA and FAK signaling using C3 toxin and FRNK (focal adhesion kinase nonrelated kinase), respectively, revealed that dematin acts upstream of RhoA. Together, these results unveil a new function of dematin as a negative regulator of the RhoA activation pathway with physiological implications for normal and pathogenic signaling pathways.  相似文献   

10.
We report a novel mechanism for dopamine D(1) receptor (D(1) R)-mediated extracellular signal-regulated kinases (Erk) activation in rat striatum. Erk signaling depends on phosphorylation and dephosphorylation events mediated by specific kinases and phosphatases. The tyrosine phosphatase Shp-2, that is required for Erk activation by tyrosine kinase receptors, has been recently shown to regulate signaling downstream of few G protein-coupled receptors. We show that the D(1) R interacts with Shp-2, that D(1) R stimulation results in Shp-2 tyrosine phosphorylation and activation in primary striatal neuronal cultures and that D(1) R/Shp-2 interaction is required for transmitting D(1) R-dependent signaling to Erk1/2 activation. D(1) R-mediated Erk1/2 phosphorylation in cultured striatal neurons is in fact abolished by over-expression of the inactive Shp-2(C/S) mutant and by small interfering RNA-induced Shp-2 silencing. Moreover, by using selective inhibitors we show that both D(1) R-induced Shp-2 activation and Erk1/2 phosphorylation are dependent on the cyclic AMP/protein kinase A pathway and require Src. These results, which were substantiated also in transfected human embryonic kidney 293 cells, provide a novel mechanism by which to converge D(1) R signaling to the Erk pathway and suggest that Shp-2 or the D(1) R/Shp-2 interface could represent a potential drug target for disorders of dopamine transmission involving malfunctioning of D(1) R signaling.  相似文献   

11.
Insulin receptor signal transduction plays a critical role in regulating pancreatic β-cell function, notably the acute first-phase insulin release in response to glucose. The basis for insulin resistance in pancreatic β-cells is not well understood but may be related to abnormal regulation of tyrosine phosphorylation events, which, in turn, may alter organization of insulin-signaling molecules in space and time. Members of the protein tyrosine phosphatase (PTPase) family are both functionally and structurally diverse; and within the past few years data have emerged from many laboratories that suggest selectivity of the PTPase catalytic domains toward cellular substrates. Of significance, a subset of PTPases has been implicated in the regulation of insulin signaling in a number of insulin-sensitive tissues. Alteration in PTPase expression or activity has been associated with abnormal regulation of tyrosine phosphorylation events and is accompanied by modulation of insulin sensitivity in vivo. Manipulations aimed at reducing expression of physiologically relevant PTPases acting at a step proximal to the insulin receptor are accompanied by normalization of blood glucose levels and improved insulin sensitivity in both normal and diabetic animals. Hence, the development of tissue-specific gene inactivation strategies should facilitate the study of the potential role of PTPases in β-cell insulin signaling transduction.  相似文献   

12.
Cell migration involves the cooperative reorganization of the actin and microtubule cytoskeletons, as well as the turnover of cell–substrate adhesions, under the control of Rho family GTPases. RhoA is activated at the leading edge of motile cells by unknown mechanisms to control actin stress fiber assembly, contractility, and focal adhesion dynamics. The microtubule-associated guanine nucleotide exchange factor (GEF)-H1 activates RhoA when released from microtubules to initiate a RhoA/Rho kinase/myosin light chain signaling pathway that regulates cellular contractility. However, the contributions of activated GEF-H1 to coordination of cytoskeletal dynamics during cell migration are unknown. We show that small interfering RNA-induced GEF-H1 depletion leads to decreased HeLa cell directional migration due to the loss of the Rho exchange activity of GEF-H1. Analysis of RhoA activity by using a live cell biosensor revealed that GEF-H1 controls localized activation of RhoA at the leading edge. The loss of GEF-H1 is associated with altered leading edge actin dynamics, as well as increased focal adhesion lifetimes. Tyrosine phosphorylation of focal adhesion kinase and paxillin at residues critical for the regulation of focal adhesion dynamics was diminished in the absence of GEF-H1/RhoA signaling. This study establishes GEF-H1 as a critical organizer of key structural and signaling components of cell migration through the localized regulation of RhoA activity at the cell leading edge.  相似文献   

13.
Members of the Rho family of small GTPases control cell adhesion and motility through dynamic regulation of the actin cytoskeleton. Although twelve family members have been identified, only three of these - RhoA, Rac and Cdc42 - have been studied in detail. RhoA regulates the formation of focal adhesions and the bundling of actin filaments into stress fibres. It is also involved in other cell signalling pathways including the regulation of gene expression and the generation of lipid second messengers [1] [2]. RhoA is very closely related to two other small GTPases about which much less is known: RhoB and RhoC (which are approximately 83% identical). Perhaps the most intriguing of these is RhoB. RhoA is largely cytosolic but translocates to the plasma membrane on activation. RhoB, however, is entirely localised to the cytosolic face of endocytic vesicles [3] [4]. This suggests a potential role for RhoB in regulating endocytic traffic; however, no evidence has been presented to support this. RhoA has been shown to act at the plasma membrane to regulate the clathrin-mediated internalisation of transferrin receptor [5] and of the muscarinic acetylcholine receptor [6]. We have recently demonstrated that RhoB binds the RhoA effector, PRK1 and targets it to the endosomal compartment [7]. We show here that RhoB acts through PRK1 to regulate the kinetics of epidermal growth factor receptor traffic.  相似文献   

14.
Integrin-induced adhesion leads to cytoskeletal reorganizations, cell migration, spreading, proliferation, and differentiation. The details of the signaling events that induce these changes in cell behavior are not well understood but they appear to involve activation of Rho family members which activate signaling molecules such as tyrosine kinases, serine/threonine kinases, and lipid kinases. The result is the formation of focal complexes, focal adhesions, and bundles and networks of actin filaments that allow the cell to spread. The present study shows that mu-calpain is active in adherent cells, that it cleaves proteins known to be present in focal complexes and focal adhesions, and that overexpression of mu-calpain increased the cleavage of these proteins, induced an overspread morphology and induced an increased number of stress fibers and focal adhesions. Inhibition of calpain with membrane permeable inhibitors or by expression of a dominant negative form of mu-calpain resulted in an inability of cells to spread or to form focal adhesions, actin filament networks, or stress fibers. Cells expressing constitutively active Rac1 could still form focal complexes and actin filament networks (but not focal adhesions or stress fibers) in the presence of calpain inhibitors; cells expressing constitutively active RhoA could form focal adhesions and stress fibers. Taken together, these data indicate that calpain plays an important role in regulating the formation of focal adhesions and Rac- and Rho-induced cytoskeletal reorganizations and that it does so by acting at sites upstream of both Rac1 and RhoA.  相似文献   

15.
The scaffolding adapter Gab2 mediates cell signaling and responses evoked by various extracellular stimuli including several growth factors. Kit, the receptor for stem cell factor (SCF), plays a critical role in the proliferation and differentiation of a variety of cell types, including mast cells. Kit, via Tyr(567) and Tyr(719), activates Src family kinases (SFK) and PI3K respectively, which converge on the activation of a Rac/JNK pathway required for mast cell proliferation. However, how Kit Tyr(567) signals to Rac/JNK is not well understood. By analyzing Gab2(-/-) mast cells, we find that Gab2 is required for SCF-evoked proliferation, activation of Rac/JNK, and Ras. Upon Kit activation in wild-type mast cells, Gab2 becomes tyrosyl-phosphorylated and associates with Kit and Shp-2. Tyr(567), an SFK binding site in Kit, and SFK activity were required for Gab2 tyrosyl phosphorylation and association with Shp-2. By re-expressing Gab2 or a Gab2 mutant that cannot bind Shp-2 in Gab2(-/-) mast cells or acutely by deleting Shp-2 in mast cells, we found that Gab2 requires Shp-2 for SCF-evoked Rac/JNK, Ras activation, and mast cell proliferation. Lastly, by analyzing mast cells from mice with compound Gab2 and Kit Y719F mutations (i.e., Gab2(-/-): KitY719F/Y719F mice), we find that Gab2, acting in a parallel pathway to PI3K from Kit Tyr(719), regulates mast cell proliferation and development in specific tissues. Our data show that Gab2 via Shp-2 is critical for transmitting signals from Kit Tyr(567) to activate the Rac/JNK pathway controlling mast cell proliferation, which likely contributes to mast cell development in specific tissues.  相似文献   

16.
We show here that Vav-2, a member of the Vav family of oncoproteins, acts as a guanosine nucleotide exchange factor (GEF) for RhoG and RhoA-like GTPases in a phosphotyrosine-dependent manner. Moreover, we show that Vav-2 oncogenic activation correlates with the acquisition of phosphorylation-independent exchange activity. In vivo, wild-type Vav-2 is activated oncogenically by tyrosine kinases, an effect enhanced further by co-expression of RhoA. Likewise, the Vav-2 oncoprotein synergizes with RhoA and RhoB proteins in cellular transformation. Transient transfection assays in NIH-3T3 cells show that phosphorylated wild-type Vav-2 and the Vav-2 oncoprotein induce cytoskeletal changes resembling those observed by the activation of the RhoG pathway. In contrast, the constitutive expression of the Vav-2 oncoprotein in rodent fibroblasts leads to major alterations in cell morphology and to highly enlarged cells in which karyokinesis and cytokinesis frequently are uncoupled. These results identify a regulated GEF for the RhoA subfamily, provide a biochemical explanation for vav family oncogenicity, and establish a new signaling model in which specific Vav-like proteins couple tyrosine kinase signals with the activation of distinct subsets of the Rho/Rac family of GTPases.  相似文献   

17.
The receptor tyrosine kinase Flt3 has been shown to play an important role in proliferation, differentiation, and survival of hematopoietic stem and progenitor cells. Although some postreceptor signaling events of Flt3 have been characterized, the involvement of Gab family proteins in Flt3 signaling is not known. In this study, we show that both Gab1 and Gab2 are rapidly tyrosine phosphorylated after Flt3 ligand stimulation of Flt3 ligand-responsive cells. They interact with tyrosine-phosphorylated Shp-2, p85, Grb2, and Shc. The results suggest that Gab proteins are engaged in Flt3 signaling to mediate downstream activation of Shp-2 and PI3 kinase pathways and possibly the Ras/Raf/MAPK pathway.  相似文献   

18.
Rho-associated coiled-coil containing protein kinase 1 (ROCK1) is a key downstream effector of the small GTPase RhoA. Targeting ROCK1 has shown promising clinical potential in cancer, cardioprotection, hypertension, diabetes, neuronal regeneration, and stem cell biology. General working hypothesis in previous studies has centered on the function of ROCK1 as a downstream sequence in the RhoA signaling pathway. In this study, the effects of the direct inhibition of ROCK1 on the activity of upstream RhoA and Rac1 were examined using a combined pharmacological and genetic approach. We report an intriguing mechanism by which the inhibition of ROCK1 indirectly diminishes the activity of upstream RhoA through the stimulation of Tiam1-induced Rac1 activity. This novel feedback mechanism, in which ROCK1 mediates upstream Rac1 and RhoA activity, offers considerable insight into the diverse effects of ROCK1 on the functional balance of the Rho family of small GTPases, which regulates actin cytoskeleton reorganization processes and the resulting overall behavior of cells.  相似文献   

19.
Signaling by lipopolysaccharide (LPS) through CD14 involves the activation of protein tyrosine kinases of the src family and leads to cytokine production and activation of arachidonic acid metabolism in macrophages. CD45 protein tyrosine phosphatase (PTPase) might play a role in modulating the response through this pathway. Although a critical role in regulation of T-cell signaling for CD45 has been demonstrated, little is known about its role in macrophages. Monoclonal antibodies to CD45 and F(ab')(2) fragments of the monoclonal antibody enhanced the response of differentiated THP-1 monocytic cells to LPS for the release of radiolabeled arachidonic acid metabolites, prostaglandin E(2), and tumor necrosis factor alpha. The enhancing effect of anti-CD45 mAbs was shown to occur primarily through CD14-dependent signaling by performing the experiments under conditions favoring that pathway. Further, LPS may be able to alter the enzymatic activity of CD45, as shown by Western blots of CD45 immunoprecipitates in which LPS caused a transient change in the phosphorylation state of CD45. We conclude that CD45 appears to play a role in LPS-induced responses through the CD14 pathway, possibly through its PTPase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号