首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apomictic plants often produce pollen that can function in crosses with related sexuals. Moreover, facultative apomicts can produce some sexual offspring. In dandelions, Taraxacum, a sexual-asexual cycle between diploid sexuals and triploid apomicts, has been described, based on experimental crosses and population genetic studies. Little is known about the actual hybridization processes in nature. We therefore studied the sexual-asexual cycle in a mixed dandelion population in the Netherlands. In this population, the frequencies of sexual diploids and triploids were 0.31 and 0.68, respectively. In addition, less than 1% tetraploids were detected. Diploids were strict sexuals, triploids were obligate apomicts, but tetraploids were most often only partly apomictic, lacking certain elements of apomixis. Tetraploid seed fertility in the field was significantly lower than that of apomictic triploids. Field-pollinated sexual diploids produced on average less than 2% polyploid offspring, implying that the effect of hybridization in the 2x-3x cycle in Taraxacum will be low. Until now, 2x-3x crosses were assumed to be the main pathway of new formation of triploid apomicts in the sexual-asexual cycle in Taraxacum. However, tetraploid pollen donors produced 28 times more triploid offspring in experimental crosses with diploid sexuals than triploid pollen donors. Rare tetraploids may therefore act as an important bridge in the formation of new triploid apomicts.  相似文献   

2.
Abstract. Theoretical models indicate that the evolution of tetraploids in diploid populations will depend on both the relative fitness of the tetraploid and that of the diploid-tetraploid hybrids. Hybrids are believed to have lower fitness due to imbalances in either the ploidy (endosperm imbalance) or the ratio of maternal to paternal genomes in their endosperm (genomic imprinting). In this study we created diploids, tetraploids, and hybrid triploids of Chamerion angustifolium from crosses between field-collected diploid and tetraploid plants and evaluated them at six life stages in a greenhouse comparison. Diploid offspring (from 2 x × 2 x crosses) had significantly higher seed production and lower biomass than tetraploid offspring (from 4 x × 4 x crosses). Relative to the diploid, the cumulative fitness of tetraploids was 0.67. In general, triploids (from 2 x × 4 x , 4 x × 2 x crosses) had significantly lower seed production, lower pollen viability, and higher biomass than diploid individuals. Triploid offspring derived from diploid maternal parents had lower germination rates, but higher pollen production than those with tetraploid mothers. Relative to diploids, the cumulative fitness of 2 x × 4 x triploids and 4 x × 2 x triploids was 0.12 and 0.06, respectively, providing some support for effect of differing maternal:paternal ratios and endosperm development as a mechanism of hybrid inviability. Collectively, the data show that tetraploids exhibit an inherent fitness disadvantage, although the partial viability and fertility of triploids may help to reduce the barrier to tetraploid establishment in sympatric populations.  相似文献   

3.
Triploids can play an important role in polyploid evolution. However, their frequent sterility is an obstacle for the origin and establishment of neotetraploids. Here we analyzed the microsporogenesis of triploids (x?=?7) and the crossability among cytotypes of Turnera sidoides, aiming to test the impact of triploids on the origin and demographic establishment of tetraploids in natural populations. Triploids of T. sidoides exhibit irregular meiotic behavior. The high frequency of monovalents and of trivalents with non-convergent orientations results in unbalanced and/or non-viable male gametes. In spite of abnormalities in chromosome pairing and unbalanced chromosome segregation, triploids are not completely sterile and yielded up to 67% of viable pollen. Triploids that originated by the fusion of 2n?×?n gametes of the same taxon showed more regular meiotic behavior and higher fertility than triploids from the contact zone of diploids and tetraploids or triploids of hybrid origin. The reproductive isolation of T. sidoides cytotypes of different ploidy level is not strict and the ‘triploid block’ may be overcome occasionally. Triploids of T. sidoides produce diploid and triploid progeny suggesting that new generations of polyploids could originate from crosses between triploids or from backcrosses with diploids. The capability of T. sidoides to multiply asexually by rhizomes, would enhance the likelihood that a low frequency of neopolyploids can be originated and maintained in natural populations of T. sidoides.  相似文献   

4.
BACKGROUND AND AIMS: Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. METHODS: Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. KEY RESULTS: The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. CONCLUSIONS: Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x x 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes.  相似文献   

5.
P. E. Brandham 《Genetica》1982,59(1):29-42
In reciprocal crosses between diploid and triploid Aloineae the progeny are largely diploid or diploid plus one or two chromosomes, but in reciprocal crosses between triploids and tetraploids they are tetraploid or nearly so. Thus the triploids contribute circa haploid gametes to the progeny when crossed with diploids but circa diploid gametes when crossed with tetraploids. These results are compared with those of a number of earlier workers. It is concluded that the bias in the frequency of progeny types towards diploidy or tetraploidy, depending on the ploidy level of the plant which is crossed with the triploid, is caused by inter-embryo competition. Those embryos with an endosperm/embryo factor of 1.5, the value found in normal diploid/diploid crosses having triploid endosperms, are selected in preference to those with factors higher or lower than 1.5.Inter-gamete competition also occurs among the euploid and aneuploid gametes produced by the triploids. This is more pronounced on the male side, because the degree of survival of aneuploid pollen from the triploids into the next generation is much lower than that of aneuploid egg nuclei.Non-reduction in the triploids gives rise to occasional pentaploid progeny in crosses with tetraploids, but it is more probable that in diploid/triploid crosses tetraploid progeny are the products of non-reduction in the diploid.  相似文献   

6.
The ability of Solanum tuberosum Group Andigena clones to produce triploids (2n = 3x = 36) in 4x(4 endosperm balance number (EBN)) x 2x(2EBN) crosses was investigated. The difference in triploid production among the clones tested, though large, appears to be the result of low heritability. The triploids produced in the 4x x 2x crosses did not seem to bear heritable factors that improved triploid production in 2x and 4x populations derived from them. Yet, the seeds/fruit data from a similar 4x x 2x cross fit a Poisson distribution. It was argued that the low probability nonheritable random events responsible for the triploids from 4x x 2x and 2x x 4x crosses were misfertilizations, mitotic abnormalities in the gametophyte, and (or) mitotic misdivisions in the endosperm.  相似文献   

7.
Summary A demographic study was carried out on two closely related species of the isopods Jaera (albifrons) ischiosetosa and J. (a.) albifrons and their F 1 hybrids. The results from the 16 possible combinations of crosses have permitted an analysis of the nature of the mechanisms assuring the isolation of the species studied. Although intraspecific crosses yield an immediate success, interspecific crosses in the absence of choice of mates progress only slowly during the course of weeks. The results of both crosses between hybrids and back-crosses turn out to be intermediate between those of intra- and interspecific crosses. The hybrids of the first generation are perfectly viable and their survival curves are identical to those of the parents. The fertility of parents in intra- and interspecific crosses is comparable, with the exception of the fragility of female descendants (heterogametic sex) in one direction of crossing. The fertility of the F 1 hybrids, however, crossed either among themselves or with their parents, is quite noticeably decreased: the time needed to double the size of the population is 2.5 times longer for the hybrids than for the parents. This hybrid breakdown completes the pre-fertilization isolating mechanisms: partial ecological isolation, and especially ethological isolation, is practically total when a choice of mates exists. The two species studied, for which demographic parameters are quite close, were raised together for ten generations and yielded only exceptional hybrids with a frequency which does not exceed that found under natural conditions.  相似文献   

8.
Based on the presence of three types of eggs with different diameters 0.13, 0.17 and 0.2 cm, we made two crosses: F2 (♀) × diploid red crucian carp (♂), and F2 (♀) × F10 tetraploid (♂). The ploidy levels of the progeny of the two crosses were examined by chromosome counting and DNA content measurement by flow cytometer. In the offspring of the former cross, tetraploids, trip-loids, and diploid were obtained. In the progeny of the latter cross, tetraploids and triploids were observed. The production of the different ploidy level fish in the progeny of the two crosses provided a further evidence that F2 might generate triploid, diploid and haploid eggs. The presence of the male tetraploid found in F2 (♀) × diploid red crucian carp (♂) suggested that the genotype of XXXY probably existed in the tetraploid progeny. The gonadal structures of the tetraploids and triploids indicated that both female and male tetraploids were fertile and the triploids were sterile. We concluded that the formations of different ploidy level eggs from F2 were contributed by endoreduplication and fusion of germ cells.  相似文献   

9.
Scleranthus annuus is a highly inbreeding annual that has varying numbers of fertile stamens per flower. Two stamen-positions always have fully fertile stamens, whereas the other eight carry staminoids or stamens to varying degrees. I measured male expression in progeny produced by crossing individuals growing in a discontinuous population. Four types of progeny were analyzed: from self-pollinations, from cross-pollinations within a patch, from cross-pollinations between patches, and from cross-pollinations between populations. Selfed progeny showed the lowest total male fertility (25.8), followed by between-population crosses (26.7), between-patch crosses (27.4), and within-patch crosses (27.8). The effect of crossing, as measured by the relative increase in frequency of fully fertile stamens compared to selfed progeny, is highest for within-patch crosses and declines with increasing spatial separation between parents. The increase was strongest for one of the antipetalous stamen positions in progeny produced by between-patch crosses (490%). The response to crossing measured as an increase in stamen fertility was not the same for all ten stamen positions. A strong increase of fertile stamens is noted in all types of crossed progeny for the five stamen positions in the outer whorl (antipetalous stamens), positions that in selfed progeny carry staminoids. The three positions in the inner whorl that are not occupied by fully fertile stamens show varying responses to crossing.  相似文献   

10.
 The partial sterility of hybrids between the indica and japonica rice subspecies of Asian cultivated rice is a serious constraint for utilizing inter-subspecific heterosis in hybrid rice breeding. In this study, we have investigated the relationship between molecular-marker polymorphism and indica-japonica hybrid fertility using a diallel set involving 20 rice accessions including 9 indica and 11 japonica varieties. Spikelet fertility of the resulting 190 F1s and their parents was examined in a replicated field trial. Intra-subspecific hybrids showed much higher spikelet fertility than inter-subspecific hybrids except in crosses involving wide-compatibility varieties. The parents were surveyed for DNA polymorphism using 96 RFLP and ten SSR markers, which revealed extensive genetic differentiation between indica and japonica varieties. A large number of markers detected highly significant effects on hybrid fertility. The chromosomal locations for many of the positive markers coincided well with previously identified loci for hybrid sterility. The correlation between hybrid fertility and parental distance was low in both intra- and inter-subspecific crosses. The results suggest that the genetic basis of indica-japonica hybrid sterility is complex. It is the qualitative, rather than the quantitative, difference between the parents that determines the fertility of hybrids. Received: 3 January 1997/Accepted: 17 January 1997  相似文献   

11.
Summary Citrus somatic hybridization and cybridization via protoplast fusion has become an integral part of citrus variety improvement programs worldwide. Citrus somatic hybrid plants have been regenerated from more than 200 parental combinations, and several cybrid combinations have also been produced. Applications of somatic hybridization to citrus scion improvement include the production of quality tetraploid breeding parents that can be used in interploid crosses to generate seedless triploids, and the direct production of triploids by haploid + diploid fusion. Applications of somatic hybridization to citrus rootstock improvement include the production of allotetraploid hybrids that combine complementary diploid rootstocks, and to combine citrus with sexually incompatible or difficult to hybridize genera that possess traits of interest for germplasm expansion. A few somatic hybrid tetraploid breeding parents have flowered, are fertile, and are being used as pollen parents to generate triploids. Several allotetraploid somatic hybrid rootstocks are performing well in commercial field trials, and show great promise for tree size control. Seed trees of most of these somatic hybrid rootstocks are producing adequate nucellar seed for standard propagation. Somatic hybridization is expected to have a positive impact on citrus cultivar improvement efforts.  相似文献   

12.
Summary Crossability between the diploid species S. circaeifolium subsp. circaeifolium (crc) and other diploid species, primarily diploid S. tuberosum subsp. tuberosum (tbr-2x), was studied. Forty-seven hybrids were obtained from crosses between crc as female parent and tbr-2x and some other species from series Tuberosa as male parents. Of these hybrids 17% were diploids; the other 83% were triploids, probably carrying two genomes of crc. Female fertility was sufficient to obtain offspring from backcrosses with the cultivated parent. Pollen stainability of the f1 varied, and micro-pollen as well as unreduced pollen occurred. During meiosis of the diploids and triploids a rather high proportion of univalents was found, and in the triploids on average two or three trivalents per cell were found. All hybrids were resistant to Globodera pallida pathotypes 2 and 3, and 75% of the tested genotypes were highly resistant to Phytophthora infestans. Solanidine, tomatidine, tomatidenol, and demissidine glycosides were found in tubers of the hybrids. Comparisons with somatic hybrids between crc and tbr-2x are made. It is concluded that crc is a valuable Solanum species that can and should be included in potato breeding programs.  相似文献   

13.
Experimental crosses between diploids, triploids and tetraploids ofHieracium echioides were made to examine mating interactions. Specifically, cytotype diversity in progeny from experimental crosses, intercytotype pollen competition as a reproductive barrier between diploids and tetraploids, and differences in seed set between intra- and intercytotype crosses were studied. Only diploids were found in progeny from 2x × 2x crosses. The other types of crosses yielded more than one cytotype in progeny, but one cytotype predominated in each cross type: diploids (92%) in 2x × 3x crosses, tetraploids (88%) in 3x × 2x crosses, triploids (96%) in 2x × 4x crosses, triploids (90%) in 4x × 2x crosses, tetraploids (60%) in 3x × 3x crosses, pentaploids (56%) in 3x × 4x crosses, triploids (80%) in 4x × 3x crosses and tetraploids (88%) in 4x × 4x crosses. No aneuploids have been detected among karyologically analyzed plants. Unreduced egg cell production was detected in triploids and tetraploids, but formation of unreduced pollen was recorded only in two cases in triploids. Triploid plants produced x, 2x and 3x gametes: in male gametes x (92%) gametes predominated whereas in female gametes 3x (88%) gametes predominated. Cytotype diversity in progeny from crosses where diploids and tetraploids were pollinated by mixture of pollen from diploid and tetraploid plants suggested intercytotype pollen competition to serve as a prezygotic reproductive barrier. No statistically significant difference in seed set obtained from intra- and intercytotype crosses between diploids and tetraploids was observed, suggesting the absence of postzygotic reproductive barriers among cytotypes.  相似文献   

14.
二倍体鲫鲤F2产生不同倍性卵子的证据   总被引:4,自引:0,他引:4  
在检测到鲫鲤F2产生3种不同大小(直径分别为0.13 cm,0.17cm和0.2 cm)类型的卵子基础上,进行了F2(♀)×红鲫(♂)及F2(♀)×四倍体鲫鲤(♂)的交配实验.通过染色体计数和流式细胞仪分析,在F2(♀)×红鲫(♂)后代中获得了四倍体、三倍体、二倍体鱼;在F2(♀)×四倍体鲫鲤(♂)后代中获得了四倍体和三倍体鱼.这两个交配组合后代中出现的不同倍性的鱼类为证明鲫鲤F2能产生三倍体、二倍体和单倍体卵子提供了进一步证据.F2(♀)×红鲫(♂)中雄性四倍体鱼的存在说明在四倍体后代中存在基因型为XXXY的个体.对上述两个交配组合后代的四倍体鱼和三倍体鱼的性腺结构观察表明四倍体鱼是可育的,而三倍体鱼是不育的.作者认为鲫鲤F2能够产生二倍体和三倍体卵子与核内复制机制和生殖细胞的融合有关.  相似文献   

15.
Abstract

The main objective of the current research was to study the reproductive behaviour of artificial triploid potato hybrids between wild Solanum commersonii and the cultivated potato Solanum tuberosum. When used in 3x × 2x crosses, triploids gave aneuploid progenies with somatic chromosome number ranging from 29 to 36. Fertilization fitness data suggested that the survival rate of gametes produced by the triploid parents may be related to their chromosome number. In addition, consistent with molecular data, our results indicated that fitness of gametes and chromosome number of progenies are influenced by the genome dosage of interspecific triploids. Since a main route to polyploidy formation is via 2n gametes and triploids, our study may contribute to a better understanding of polyploid plant reproduction, evolution and breeding.  相似文献   

16.
Gong N  Yang H  Zhang G  Landau BJ  Guo X 《Heredity》2004,93(5):408-415
Reproduction and chromosome inheritance in triploid Pacific oyster (Crassostrea gigas Thunberg) were studied in diploid female x triploid male (DT) and reciprocal (TD) crosses. Relative fecundity of triploid females was 13.4% of normal diploids. Cumulative survival from fertilized eggs to spat stage was 0.007% for DT crosses and 0.314% for TD crosses. Chromosome number analysis was conducted on surviving progeny from DT and TD crosses at 1 and 4 years of age. At Year 1, oysters from DT crosses consisted of 15% diploids (2n=20) and 85% aneuploids. In contrast, oysters from TD crosses consisted of 57.2% diploids, 30.9% triploids (3n=30) and only 11.9% aneuploids, suggesting that triploid females produced more euploid gametes and viable progeny than triploid males. Viable aneuploid chromosome numbers included 2n+1, 2n+2, 2n+3, 3n-2 and 3n-1. There was little change over time in the overall frequency of diploids, triploids and aneuploids. Among aneuploids, oysters with 2n+3 and 3n-2 chromosomes were observed at Year 1, but absent at Year 4. Triploid progeny were significantly larger than diploids by 79% in whole body weight and 98% in meat weight at 4 years of age. Aneuploids were significantly smaller than normal diploids. This study suggests that triploid Pacific oyster is not completely sterile and cannot offer complete containment of cultured populations.  相似文献   

17.
Summary The distributions are given of gene frequencies among embryos after G X W and W X G plastid crosses within and between eight Pelargonium cultivars and some of their inbred or hybrid derivatives.Two distinct segregation patterns are recognized. Homozygous type I female parents (Pr1Pr1) have a high frequency of progeny with only maternal alleles, are intermediate for biparental and low for paternal offspring. Heterozygous type II female plants (Pr1Pr2) have an equally high frequency of maternal and paternal offspring and a generally low biparental frequency. These correspond to L-shaped and U-shaped gene frequency distributions respectively in which the only modes are at 0 per cent (maternal embryos) and 100 per cent (paternal embryos), with no mode corresponding to the population mean and no sign of a Gaussian distribution.The extremely variable plastid gene frequencies are strongly influenced by the maternal nuclear genotype and by the plastid genotype in which the wild-type allele is always more successful than the mutant in strict comparisons.The relative frequencies of maternal and paternal zygotes, and the mean gene frequency among all the zygotes in a cross, are explicable in terms of the input frequencies of genes from the two parents, their degree of mixing, and by some form of selective replication of plastids. This selection is controlled by nuclear and plastid genotypes which may act in the same direction, to increase the frequency of either the maternal or the paternal alleles, or in opposition. But selection alone is inadequate to explain the shapes of the gene frequency distributions. Instead, a model is proposed in which the segregation or replication of plastids appears to have a strong random element, which results in random drift of gene frequencies within a heteroplasmic zygote or embryo.  相似文献   

18.
B. Valent  L. Farrall    F. G. Chumley 《Genetics》1991,127(1):87-101
We have identified genes for pathogenicity toward rice (Oryza sativa) and genes for virulence toward specific rice cultivars in the plant pathogenic fungus Magnaporthe grisea. A genetic cross was conducted between the weeping lovegrass (Eragrostis curvula) pathogen 4091-5-8, a highly fertile, hermaphroditic laboratory strain, and the rice pathogen O-135, a poorly fertile, female-sterile field isolate that infects weeping lovegrass as well as rice. A six-generation backcrossing scheme was then undertaken with the rice pathogen as the recurrent parent. One goal of these crosses was to generate rice pathogenic progeny with the high fertility characteristic of strain 4091-5-8, which would permit rigorous genetic analysis of rice pathogens. Therefore, progeny strains to be used as parents for backcross generations were chosen only on the basis of fertility. The ratios of pathogenic to nonpathogenic (and virulent to avirulent) progeny through the backcross generations suggested that the starting parent strains differ in two types of genes that control the ability to infect rice. First, they differ by polygenic factors that determine the extent of lesion development achieved by those progeny that infect rice. These genes do not appear to play a role in infection of weeping lovegrass because both parents and all progeny infect weeping lovegrass. Second, the parents differ by simple Mendelian determinants, ``avirulence genes,' that govern virulence toward specific rice cultivars in all-or-none fashion. Several crosses confirm the segregation of three unlinked avirulence genes, Avr1-CO39, Avr1-M201 and Avr1-YAMO, alleles of which determine avirulence on rice cultivars CO39, M201, and Yashiro-mochi, respectively. Interestingly, avirulence alleles of Avr1-CO39, Avr1-M201 and Avr1-YAMO were inherited from the parent strain 4091-5-8, which is a nonpathogen of rice. Middle repetitive DNA sequences (``MGR sequences'), present in approximately 40-50 copies in the genome of the rice pathogen parent, and in very low copy number in the genome of the nonpathogen of rice, were used as physical markers to monitor restoration of the rice pathogen genetic background during introgression of fertility. The introgression of highest levels of fertility into the most successful rice pathogen progeny was incomplete by the sixth generation, perhaps a consequence of genetic linkage between genes for fertility and genes for rice pathogenicity. One chromosomal DNA segment with MGR sequence homology appeared to be linked to the gene Avr1-CO39. Finally, many of the crosses described in this paper exhibited a characteristic common to many crosses involving M. grisea rice pathogen field isolates. That is, pigment-defective mutants frequently appeared among the progeny.  相似文献   

19.
Wang H  Li F  Xiang J  Zhang C  Yu K 《Genetica》2008,132(1):43-50
This is the first report of microsatellite-centromere mapping in this commercial species Fenneropenaeus Chinensis, and will be important for providing fixed points in the linkage groups of genetic maps. Triploid Chinese shrimp was induced by heat shock. The fertilized eggs were treated either by retention of the first polar body or the second polar body to produce Meiosis I (MI) or Meiosis II (MII) triploid. The triploidy status in each Chinese shrimp could be confirmed by nine polymorphic microsatellite loci, in which the parents with different alleles and the female parents were each heterozygous. The nine loci were mapped in relation to their centromeres in three MII triploid families, which were induced by retention of the second polar bodies after fertilization with sperm. Microsatellite-centromere (M-C) distances ranged from 9.6 cM to 37 cM under the assumption of complete interference. Information on the positions of centromeres in relation to the microsatellite loci will represent a contribution towards assembly of genetic maps in F. chinensis. Twelve polymorphic microsatellites were used to assess the heterozygosity and allelic diversity in different ploidy classes. As expected, triploids were significantly more polymorphic than diploids. The diploids had an average heterozygosity and allelic diversity value of 0.86, whereas the triploids heterozygosity averaged 0.93 and had allelic diversity value of 1.29. However, MI triploids were not significantly more polymorphic than MII in the microsatellite loci.  相似文献   

20.
Summary Triploids (2n=3X=60) were obtained from genetic male-sterile (ms1 ms1) soybean [Glycine max (L.) Merr.] plants. Meiosis, pollen fertility, and chromosome number of their progeny were studied. Studies of meiosis in fertile and sterile triploids revealed no distinguishable differences in chromosome associations. Male-sterile plants formed coenocytic microspores characteristic of the ms1 mutant. Restitution of some dyad and tetrad nuclei were observed in male-sterile plants. Chromosomes of the triploids tended to occur in trivalents during diakinesis and metaphase I (MI), but multivalents, bivalents, and univalents also were observed. Average types and frequencies of chromosome associations per cell in diakinesis and MI from 542 pollen mother cells were 0.004 IX + 0.06 VI + 0.002 V + 0.005 IV + 16.99 III + 1.79 II + 5.03 I. Some secondary associations, nonhomologous pairing, and aberrant nucleolar distributions occasionally were observed. Such behavior support the hypothesis of duplicated genomes and the polyploid origin of soybean. Pollen fertility in male-fertile triploid plants (Ms1 ms1 ms1) varied from 57% to 82%, with an average of about 71%. Chromosome numbers of progenies obtained from these fertile triploids varied from 2n=40 to 2n=71, and exhibited a near-random distribution, with the majority (about 60%) being between 56 and 65. Progenies of the fertile triploids gave segregation ratios for the ms1 allele, which confirmed the Ms1 ms1 ms1 genotype.Joint contribution: Agricultural Research Service, U.S. Department of Agriculture, and Journal Paper No. J-11672 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011, USA, Project 2471  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号