首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the updated version (Y2K) of the database of ribosomal 5S ribonucleic acids (5S rRNA) and their genes (5S rDNA), http://rose.man/poznan.pl/5SData/index.html. This edition of the database contains 1985primary structures of 5S rRNA and 5S rDNA. They include 60 archaebacterial, 470 eubacterial, 63 plastid, nine mitochondrial and 1383 eukaryotic sequences. The nucleotide sequences of the 5S rRNAs or 5S rDNAs are divided according to the taxonomic position of the source organisms.  相似文献   

2.
3.
The possible location of RNA in the ribosomal attachment site for the eukaryotic elongation factor EF-2 was analysed. Stable EF-2 · ribosome complexes formed in the presence of the non-hydrolysable GTP analogue GuoPP[CH2]P were cross-linked with the short (4 Å between the reactive groups) bifunctional reagent, diepoxybutane. Non-cross-linked EF-2 was removed and the covalent factor-ribosome complex isolated. No interaction between EF-2 and 18 S or 28 S rRNA could be demonstrated. However, density gradient centrifugation of the cross-linked ribosomal complexes showed an increased density (1.25 g/cm3) of the factor, as expected from a covalent complex between EF-2 and a low-molecular-weight RNA species. Treatment of the covalent ribosome-factor complexes with EDTA released approx 50% of the cross-linked EF-2 from the ribosome together with the 5 S rRNA · protein L5 complex. Furthermore, the complex co-migrated with the 5S rRNA · L5 particle in sucrose gradients. Polyacrylamide gel electrophoresis showed that EF-2 was directly linked to 5 S rRNA in the 5 S rRNA · L5 complex, as well as in the complexes isolated by density gradient centrifugation. No traces of 5.8 S rRNA or tRNA could be demonstrated. The data indicate that the ribosomal binding domain for EF-2 contains the 5 S rRNA · protein L5 particle and that EF-2 is located in close proximity to 5 S rRNA within the EF-2 · GuoPP[CH2]P · ribosome complex.  相似文献   

4.
5.
The 30 S ribosomal subunit from Escherichia coli was unfolded into discrete particles upon which physical studies were carried out. These particles were found to be homogeneous and were characterized using sedimentation velocity, diffusion, density and viscosity measurements. The results of these studies clearly certify two distinct stages of unfolding, neither involving a significant loss of protein. However, the results also clearly show that the measurement of only one characteristic (e.g., the sedimentation coefficient) is not sufficient to suggest a structural change. The significance and importance of the apparent specific volume are stressed.  相似文献   

6.
Ribosomal protein L2 from Escherichia coli binds to and protects from nuclease digestion a substantial portion of 'domain IV' of 23S rRNA. In particular, oligonucleotides derived from the sequence 1757-1935 were isolated and shown to rebind specifically to protein L2 in vitro. Other L2-protected oligonucleotides, also derived from domain IV (i.e. from residues 1955-2010) did not rebind to protein L2 in vitro nor did others derived from domain I. Given that protein L2 is widely believed to be located in the peptidyl transferase centre of the 50S ribosomal subunit, these data suggest that domain IV of 23S rRNA is also present in that active site of the ribosomal enzyme.  相似文献   

7.
The Escherichia coli ATP-dependent protease Lon degrades ribosomal S2 protein in the presence of inorganic polyphosphate (polyP). In this study, the process of the degradation was investigated in detail. During the degradation, 68 peptides with various sizes (4-29 residues) were produced in a processive fashion. Cleavage occurred at 45 sites, whose P1 and P3 positions were dominantly occupied by hydrophobic residues. These cleavage sites were located preferentially at the regions with rigid secondary structures and the P1 residues of the major cleavage sites appeared to be concealed from the surface of the substrate molecule. Furthermore, polyP changed not only the substrate preference but also the oligomeric structure of the enzyme.  相似文献   

8.
9.
10.
We have studied the effects of protein mutations on the higher order structure of 16 S rRNA in Escherichia coli ribosomes, using a set of structure-sensitive chemical probes. Ten mutant strains were studied, which contained alterations in ribosomal proteins S4 and S12, including double mutants containing both altered S4 and S12. Two ribosomal ambiguity (ram) S4 mutant strains, four streptomycin resistant (SmR) S12 mutant strains, one streptomycin pseudodependent (SmP) S12 mutant strain, one streptomycin dependent (SmD) S12 mutant strain and two streptomycin independent (Sm1) double mutants (containing both-SmD and ram mutations) were probed and compared to an isogenic wild-type strain. In ribosomes from strains containing S4 ram mutations, nucleotides A8 and A26 become more reactive to dimethyl sulfate (DMS) at their N-1 positions. In ribosomes from strains bearing the SmD allele, A908, A909, A1413 and G1487 are significantly less reactive to chemical probes. These same effects are observed when the S4 and S12 mutations are present simultaneously in the double mutants. An interesting correlation is found between the reactivity of A908 and the miscoding potential of SmR, SmD, SmP and wild-type ribosomes; the reactivity of A908 increases as the translational error frequency of the ribosomes increases. In the case of ram ribosomes, the reactivity of A908 resembles that of wild-type, unless tRNA is bound, in which case it becomes hyper-reactive. Similarly, streptomycin has little effect on A908 in wild-type ribosomes unless tRNA is bound, in which case its reactivity increases to resemble that of ram ribosomes with bound tRNA. Finally, interaction of streptomycin with SmP and SmD ribosomes causes the reactivity of A908 to increase to near-wild-type levels. A simple model is proposed, in which the reactivity of A908 reflects the position of an equilibrium between two conformational states of the 30 S subunit, one of which is DMS-reactive, and the other DMS-unreactive. In this model, the balance between these two states would be influenced by proteins S4 and S12. Mutations in S12 generally cause a shift toward the unreactive conformer, and in the case of SmD and SmP ribosomes, this shift can be suppressed phenotypically by streptomycin, ram mutations in protein S4 cause a shift toward the reactive conformer, but only when tRNA is bound. This suggests that the opposing effects of these two classes of mutations influence the proof-reading process by somewhat different mechanisms.  相似文献   

11.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

12.
13.
Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.  相似文献   

14.
Computer modeling 16 S ribosomal RNA   总被引:3,自引:0,他引:3  
A three-dimensional structure for 16 S RNA has been produced with a computer protocol that is not dependent on human intervention. This protocol improves upon traditional modeling techniques by using distance geometry to fold the molecule in an objective and reproducible fashion. The method is based on the secondary structure of RNA and treats the molecule as a set of double-stranded helices that are linked by flexible single-strands of variable length. Data derived from chemical cross-linking studies of 16 S RNA and tertiary phylogenetic relationships provide the constraints used to fold the molecule into a compact three-dimensional form. Possibly subjective evaluation of the input data are transformed into verifiable quantitative parameters. Relationships based on general locations within the 30 S subunit or on protein-RNA interactions have been specifically excluded. The resolution of the model exceeds that of electron micrographs and approaches that obtained in preliminary X-ray crystal structures. The model size of 245 x 190 x 140 A is compatible with that of the 30 S subunit as determined by electron microscopy. The volume of the model is 1.87 x 10(6) A which is similar to that of the small subunit in a preliminary X-ray crystal structure. The radius of gyration of the model structure of 76 A is intermediate to that seen for partially denatured and fully folded 16 S RNA. Computer graphics are used to display the results in a manner that maximizes the opportunities for human visual interpretation of the models. A format for displaying the structures has been developed that will make it possible for researchers who have not devoted themselves to ribosomal modeling to comprehend and make use of the information that the models embody. On this basis the computer-generated models are compared with models developed by other researchers and with structural data not included in the folding parameter data set.  相似文献   

15.
Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established. A novel pH-gradient FcRn affinity chromatography method was applied to isolate three antibody oxidation variants from an oxidized IgG1 preparation based on their FcRn binding properties. Physico-chemical characterization revealed that the three oxidation variants differed predominantly in the number of oxMet252 per IgG (0, 1, or 2), but not significantly in the content of oxMet428. Corresponding to the increase in oxMet252 content, stepwise reduction of FcRn affinity in vitro, as well as faster clearance and shorter terminal half-life, in huFcRn-transgenic mice were observed. A single Met252 oxidation per antibody had no significant effect on pharmacokinetics (PK) compared with unmodified IgG. Importantly, only molecules with both heavy chains oxidized at Met252 exhibited significantly faster clearance. In contrast, Met428 oxidation had no apparent negative effect on PK and even led to somewhat improved FcRn binding and slower clearance. This minor effect, however, seemed to be abrogated by the dominant effect of Met252 oxidation. The novel approach of functional chromatographic separation of IgG oxidation variants followed by physico-chemical and biological characterization has yielded the first experimentally-backed explanation for the unaltered PK properties of antibody preparations containing relatively high Met252 and Met428 oxidation levels.  相似文献   

16.
rig, a gene originally isolated from a rat insulinoma cDNA library, codes for a basic 145 amino acid protein [( 1986) Diabetes 35, 1178-1180]. Here we show that the immunoreactivity to a monoclonal antibody against the deduced rig protein and the translation product of rig mRNA comigrated with ribosomal protein S15. The amino acid sequence of ribosomal protein S15 purified from rat liver coincided with that deduced from the nucleotide sequence of rig mRNA, but there were indications that the initiator methionine was removed and the succeeding alanyl residue was monoacetylated. From these results, we conclude that the product of rig is ribosomal protein S15.  相似文献   

17.
Ribosomal protein L9 consists of two globular alpha/beta domains separated by a nine-turn alpha-helix. We examined the rRNA environment of L9 by chemical footprinting and directed hydroxyl radical probing. We reconstituted L9, or individual domains of L9, with L9-deficient 50 S subunits, or with deproteinized 23 S rRNA. A footprint was identified in domain V of 23 S rRNA that was mainly attributable to N-domain binding. Fe(II) was tethered to L9 via cysteine residues introduced at positions along the alpha-helix and in the C-domain, and derivatized proteins were reconstituted with L9-deficient subunits. Directed hydroxyl radical probing targeted regions of domains I, III, IV, and V of 23 S rRNA, reinforcing the view that 50 S subunit architecture is typified by interwoven rRNA domains. There was a striking correlation between the cleavage patterns from the Fe(II) probes attached to the alpha-helix and their predicted orientations, constraining both the position and orientation of L9, as well as the arrangement of specific elements of 23 S rRNA, in the 50 S subunit.  相似文献   

18.
Assembly of 30S ribosomal subunits from Escherichia coli has been dissected in detail using an in vitro system. Such studies have allowed characterization of the role for ribosomal protein S15 in the hierarchical assembly of 30S subunits; S15 is a primary binding protein that orchestrates the assembly of ribosomal proteins S6, S11, S18, and S21 with the central domain of 16S ribosomal RNA to form the platform of the 30S subunit. In vitro S15 is the sole primary binding protein in this cascade, performing a critical role during assembly of these four proteins. To investigate the role of S15 in vivo, the essential nature of rpsO, the gene encoding S15, was examined. Surprisingly, E. coli with an in-frame deletion of rpsO are viable, although at 37 degrees C this DeltarpsO strain has an exaggerated doubling time compared to its parental strain. In the absence of S15, the remaining four platform proteins are assembled into ribosomes in vivo, and the overall architecture of the 30S subunits formed in the DeltarpsO strain at 37 degrees C is not altered. Nonetheless, 30S subunits lacking S15 appear to be somewhat defective in subunit association in vivo and in vitro. In addition, this strain is cold sensitive, displaying a marked ribosome biogenesis defect at low temperature, suggesting that under nonideal conditions S15 is critical for assembly. The viability of this strain indicates that in vivo functional populations of 70S ribosomes must form in the absence of S15 and that 30S subunit assembly has a plasicity that has not previously been revealed or characterized.  相似文献   

19.
《MABS-AUSTIN》2013,5(5):1229-1242
Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established. A novel pH-gradient FcRn affinity chromatography method was applied to isolate three antibody oxidation variants from an oxidized IgG1 preparation based on their FcRn binding properties. Physico-chemical characterization revealed that the three oxidation variants differed predominantly in the number of oxMet252 per IgG (0, 1, or 2), but not significantly in the content of oxMet428. Corresponding to the increase in oxMet252 content, stepwise reduction of FcRn affinity in vitro, as well as faster clearance and shorter terminal half-life, in huFcRn-transgenic mice were observed. A single Met252 oxidation per antibody had no significant effect on pharmacokinetics (PK) compared with unmodified IgG. Importantly, only molecules with both heavy chains oxidized at Met252 exhibited significantly faster clearance. In contrast, Met428 oxidation had no apparent negative effect on PK and even led to somewhat improved FcRn binding and slower clearance. This minor effect, however, seemed to be abrogated by the dominant effect of Met252 oxidation. The novel approach of functional chromatographic separation of IgG oxidation variants followed by physico-chemical and biological characterization has yielded the first experimentally-backed explanation for the unaltered PK properties of antibody preparations containing relatively high Met252 and Met428 oxidation levels.  相似文献   

20.
Exogenous FGF-2 added to cells is internalized and part of it translocates to the nucleus of the cells. To get a better understanding of the FGF-2-induced signaling pathway, we looked for proteins associated with FGF-2 in the cytoplasm of the target cells. We first used the GST-FGF-2 to isolate cytoplasmic proteins complexes containing FGF-2 from S100 extract (supernatant 100,000g). Among the retrieved proteins, we focused our studies on RPS19, a protein of the 40S small ribosomal subunit. We showed that FGF-2 interacts directly with RPS19 in vitro. Second, we coimmunoprecipitated RPS19 and FGF-2 from a S240 extract (240,000g supernatant) prepared from FGF-2-stimulated cells and devoid of 40S ribosomal subunit. The result of these experiments suggest that a pool of free RPS19 exists in cells and that FGF-2 interacts in vivo with free RPS19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号