首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial endosymbionts (Buchnera) from the aphids Rhopalosiphum padi, R. maidis, Schizaphis graminum, and Acyrthosiphon pisum contain the genes for anthranilate synthase (trpEG) on plasmids made up of one or more 3.6-kb units. Anthranilate synthase is the first as well as the rate-limiting enzyme in the tryptophan biosynthetic pathway. The amplification of trpEG on plasmids may result in an increase of enzyme protein and overproduction of this essential amino acid, which is required by the aphid host. The nucleotide sequence of trpEG from endosymbionts of different species of aphids is highly conserved, as is an approximately 500-bp upstream DNA segment which has the characteristics of an origin of replication. Phylogenetic analyses were performed using trpE and trpG from the endosymbionts of these four aphids as well as from the endosymbiont of Schlechtendalia chinensis, in which trpEG occurs on the chromosome. The resulting phylogeny was congruent with trees derived from sequences of two chromosome-located bacterial genes (part of trpB and 16S ribosomal DNA). In turn, trees obtained from plasmid-borne and bacterial chromosome-borne sequences were congruent with the tree resulting from phylogenetic analysis of three aphid mitochondrial regions (portions of the small and large ribosomal DNA subunits, as well as cytochrome oxidase II). Congruence of trees based on genes from host mitochondria and from bacteria adds to previous support for exclusively vertical transmission of the endosymbionts within aphid lineages. Congruence with trees based on plasmid-borne genes supports the origin of the plasmid-borne trpEG from the chromosomal genes of the same lineage and the absence of subsequent plasmid exchange among endosymbionts of different species of aphids. Received: 22 August 1995 / Accepted: 6 September 1995  相似文献   

2.
Buchnera aphidicola is an obligate intracellular symbiont of aphids. One of its proposed functions is the synthesis of essential amino acids, nutrients required by aphids but deficient in their diet of plant phloem sap. The genetic organization of the tryptophan pathway in Buchnera from proliferous aphids of the family Aphididae has previously been shown to reflect a capacity to overproduce this essential amino acid (C.-Y. Lai, L. Baumann, and P. Baumann, Proc. Natl. Acad. Sci. USA 91:3819–3823, 1994). This involved amplification of the genes for the first enzyme in the pathway, anthranilate synthase (TrpEG), on a low-copy-number plasmid. Here we report on the finding and molecular characterization of TrpEG-encoding plasmids in Buchnera from aphids of the distantly related family Pemphigidae. Buchnera from Tetraneura caerulescens contained a 3.0-kb plasmid (pBTc2) that carried a single copy of trpEG and resembled trpEG plasmids of Buchnera from the Aphididae. The second plasmid (pBPs2), isolated from Buchnera of Pemphigus spyrothecae, contained a different replicon. It consisted of a putative origin of replication containing iterons and an open reading frame, designated repAC, which showed a high similarity to the gene encoding the replication initiation protein RepA of the RepA/C replicon from the broad-host-range IncA/C group of plasmids. The plasmid population was heterogeneous with respect to the number of tandem repeats of a 1.8-kb unit carrying repAC1, trpG, and remnants of trpE. The two principal forms consisted of either five or six copies of this repeat and a single-copy region carrying repAC2, the putative origin of replication, and trpE. The unexpected finding of elements of the RepA/C replicon in previously characterized trpEG plasmids from Buchnera of the Aphididae suggests that a replacement of replicons has occurred during the evolution of these plasmids, which may point to a common ancestry for all Buchnera trpEG amplifications.  相似文献   

3.
The aphid Uroleucon sonchi contains a prokaryotic endosymbiont (Buchnera) with plasmids having trpEG as well as remnants of trpE pseudogenes. In this respect it resembles Buchnera from the aphid Diuraphis noxia. Phylogenetic trees based on trpE (plasmid gene) and trpB (chromosomal genes) from eight species of aphids are congruent, indicating a lack of exchange of plasmids among endosymbionts from different aphid species. Received: 16 December 1996 / Accepted: 26 December 1996  相似文献   

4.
R C van Ham  A Moya    A Latorre 《Journal of bacteriology》1997,179(15):4768-4777
An 8.5-kb plasmid encoding genes (leuABCD) involved in leucine biosynthesis and a small plasmid of 1.74 kb of yet unknown function were found in the intracellular symbiont, Buchnera aphidicola, of two divergent aphid species, Thelaxes suberi and Tetraneura caerulescens, respectively. The leuABCD-carrying plasmid (pBTs1) was amplified from total aphid DNA by inverse long PCR, using outwardly oriented oligonucleotide primers specific to leuA. The resulting 8.2-kb PCR fragment as well as the 1.74-kb plasmid (pBTc1) were cloned and sequenced. pBTs1 differed from a previously described B. aphidicola plasmid (pRPE) of the aphid Rhopalosiphum padi by the presence of a small heat shock gene (ibp) and in the order of the leuABCD and repA genes. Comparison of both leucine plasmids to the small plasmid pBTc1 revealed extensive similarity with respect to putative replication functions as well as in the presence of a highly conserved open reading frame that was found to be homologous to Escherichia coli YqhA and Haemophilus influenzae HI0507 and which may encode an integral membrane protein. The three B. aphidicola plasmids most likely evolved from a common ancestral replicon, which in turn may be distantly related to IncFII plasmids. Phylogenetic affiliations of the B. aphidicola strains of the two aphid species were assessed by sequencing of their 16S rRNA genes. Evaluation of the distribution of the leuABCD-encoding plasmids within a phylogenetic framework suggests independent origins for pBTs1 and pRPE from an ancestral replicon resembling pBTc1. The implications for symbiotic essential amino acid biosynthesis and provisioning are discussed.  相似文献   

5.
Endosymbiotic bacteria live in animal cells and are transmitted vertically at the time of the host's reproduction. In view of their small and asexual populations with infrequent chances of recombination, these endocellular bacteria are expected to accumulate mildly deleterious mutations. Previous studies showed that the DNA sequences of these bacteria evolved faster than those of free-living bacteria. In this study, we compared all the ORFs of Buchnera, an endocellular bacterial symbiont of aphids, with those of 34 other prokaryotic organisms and estimated the effect of the accelerated evolution of Buchnera on the functions of its proteins. It was revealed that Buchnera proteins contain many mutations at the sites where sequences are conserved in their orthologues in many other organisms. In addition, amino acid replacements at the conserved sites are mostly changes to physicochemically different amino acids. These results suggest that functions and conformations of Buchnera proteins have been seriously impaired or strongly modified. Indeed, extensive loss of functional motifs was observed in some Buchnera proteins. In many Buchnera proteins mutations were not detected evenly throughout each molecule but tended to accumulate in some functional units, possibly leading to loss of specific functions. As Buchnera has an unusual and limited gene repertory, it is conceivable that the manner of interactions among its proteins has been changed, and thus, functional constraints over their amino acid residues have also been changed during evolution. This may account for the loss of some functional units only in the Buchnera proteins. We obtained evidence that amino acid replacements in Buchnera were not always deleterious, but neutral or, in some cases, even positively selected. Received: 14 December 2000 / Accepted: 12 March 2001  相似文献   

6.
A+T content, phylogenetic relationships, codon usage, evolutionary rates, and ratio of synonymous versus non-synonymous substitutions have been studied in partial sequences of the atpD and aroQ/pheA genes of primary (Buchnera) and secondary symbionts of aphids and a set of selected non-symbiotic bacteria, belonging to the five subdivisions of the Proteobacteria. Compared to the homologous genes of the last group, both genes belonging to Buchnera behave in a similar way, showing a higher A+T content, forming a monophyletic group, a loss in codon bias, especially in third base position, an evolutionary acceleration and an increase in the number of non-synonymous substitutions, confirming previous results reported elsewhere for other genes. When available, these properties have been partly observed with the secondary symbionts, but with values that are intermediate between Buchnera and free living Proteobacteria. They show high A+T content, but not as high as Buchnera, a non-solved phylogenetic position between Buchnera, and the other γ-Proteobacteria, a loss in codon bias, again not as high as in Buchnera and a significant evolutionary acceleration in the case of the three atpD genes, but not when considering aroQ/pheA genes. These results give support to the hypothesis that they are symbionts at different stages of the symbiotic accommodation to the host.  相似文献   

7.
Aphids harbor primary endosymbionts, Buchnera aphidicola, in specialized cells within their body cavities. Aphids and Buchnera have strict mutualistic relationships in nutrition exchange. This ancient association has received much attention from researchers who are interested in endosymbiotic evolution. Previous studies have found parallel phylogenetic relationships between non‐galling aphids and Buchnera at lower taxonomic levels (genus, species). To understand whether relatively isolated habitats such as galls have effect on the parallel relationships between aphids and Buchnera, the present paper investigated the phylogenetic relationships of gall aphids from Pemphigus and allied genera, which induce pseudo‐galls or galls on Populus spp. (poplar) and Buchnera. The molecular phylogenies inferred from three aphid genes (COI, COII and EF‐1α) and two Buchnera genes (gnd, 16S rRNA gene) indicated significant congruence between aphids and Buchnera at generic as well as interspecific levels. Interestingly, both aphid and Buchnera phylogenies supported three main clades corresponding to the galling locations of aphids, namely leaf, the joint of leaf blade and petiole, and branch of the host plant. The results suggest phylogenetic conservatism of gall characters, which indicates gall characters are more strongly affected by aphid phylogeny, rather than host plants.  相似文献   

8.
Buchnera are prokaryotic endosymbionts found in most aphids. One of their functions is the synthesis of the essential amino acid tryptophan for the aphid host. In Buchnera from some aphids that have a long development time, trpEG, which encodes the first enzyme of the tryptophan biosynthetic pathway (anthranilate synthase), is found as one copy on the endosymbiont chromosome and is located between hsIU and fpr. In Buchnera from Schizaphis graminum, which has a short development time, trpEG is amplified on plasmids. We have cloned and sequenced a 4.1-kb DNA fragment from Buchnera of S. graminum and have found the gene order hsIU-ibp-fpr-yjeA-kdtB. The proximity of hsIU and fpr is consistent with the excision, in an endosymbiont ancestor, of trpEG from a location between these two genes, with the excision either followed or preceded by acquisition of ibp. Received: 5 December 1998 / Accepted: 10 December 1998  相似文献   

9.
Impact of a parasitoid on the bacterial symbiosis of its aphid host   总被引:2,自引:0,他引:2  
Embryo production in aphids is absolutely dependent on the function of symbiotic bacteria, mainly Buchnera, and the growth and development of koinobiont parasitoids in aphids requires the diversion of nutrients from aphid embryo production to the parasitoid. The implication that the bacterial symbiosis may be promoted in parasitized aphids to support the growing parasitoid was explored by analysis of the number and biomass of mycetocytes, and the aphid cells bearing Buchnera, in the pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) parasitized by the wasp Aphidius ervi Haliday (Hymenoptera: Braconidae). Aphids hosting a young larval parasitoid bore more mycetocytes of greater total biomass, and embryos of lower biomass than unparasitized aphids. Furthermore, one of the three aphid clones tested, which limited teratocyte growth (giant cells of parasitoid origin having a trophic role), bore smaller mycetocytes and larger embryos, than one or both of the two aphid clones with greater susceptibility to the parasitoid. These data suggest that susceptibility of the aphid‐Buchnera symbiosis to parasitoid‐mediated manipulation may, directly or indirectly, contribute to aphid susceptibility to parasitoid exploitation.  相似文献   

10.
Abstract The genome of Buchnera, an endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum, was characterized by pulse-field gel electrophoresis (PFGE) as a circular DNA molecule of 657 kb. The enzymes I-CeuI, CpoI, ApaI, SmaI, NaeI, SacII, MluI, FspI, and NruI were used to cleave the DNA of Buchnera into fragments of suitable size for PFGE analysis. A physical map of the Buchnera genome, including restriction fragments from seven of these enzymes, was constructed using double cutting, partial digestion, and hybridization with linking fragments, and 29 genes and operons were localized on the map. In addition, the genomic map of Buchnera was compared with those of Escherichia coli and Haemophilus influenzae. The gene order in Buchnera is more similar to that of E. coli than to H. influenzae. The dramatic shrinkage of the Buchnera genome compared with those of other members of the closely related Enterobacteriaceae family is discussed in terms of evolution under the influence of the intracellular symbiotic association. Received: 20 May 1998 / Accepted: 1 July 1998  相似文献   

11.
The prokaryotic endosymbiont (Buchnera) of the aphid Schizaphis graminum contains 24 copies of a plasmid that has genes encoding enzymes of the leucine biosynthetic pathway while the endosymbiont of the related aphid Diuraphis noxia has only one copy of this plasmid. These results, in conjunction with similar results for the trpEG-containing plasmids, suggest that D. noxia has a reduced demand for endosymbiont-derived essential amino acids. Received: 11 September 1997 / Accepted: 23 September 1997  相似文献   

12.
Although Buchnera, the endosymbiotic bacteria of aphids, are close relatives of Escherichia coli, their genome size is only a seventh that of E. coli. In this study, we estimated the genomic copy number of Buchnera by dot-blot hybridization and fluorimetry using a video-intensified microscope photon-counting system and obtained convincing evidence that each cell of these bacteria contains an average of 120 genomic copies. Thus, the Buchnera symbiont, with many copies of a small-sized genome, is reminiscent of cell organelles such as mitochondria and chloroplasts. Received: 25 November 1998 / Accepted: 25 December 1998  相似文献   

13.
14.
Plague GR  Dale C  Moran NA 《Molecular ecology》2003,12(4):1095-1100
The bacterial endosymbiont of aphids, Buchnera aphidicola, often provides amino acids to its hosts. Plasmid amplification of leucine (leuABCD) and tryptophan (trpEG) biosynthesis genes may be a mechanism by which some Buchnera over-produce these nutrients. We used quantitative polymerase chain reaction to assess the leuABCD/trpEG copy variability within Uroleucon ambrosiae, an aphid with a wide diet breadth and range. Both leuABCD and trpEG abundances are: (i) similar for aphids across 15 populations, and (ii) low compared to Buchnera from other aphid species (particularly trpEG). Consequently, the plasmid location of trpEG combined with Buchnera's chromosomal polyploidy may functionally limit, rather than increase, tryptophan production within Uroleucon ambrosiae.  相似文献   

15.
We have identified and completely sequenced a novel plasmid isolated from the aphid Rhopalosiphum padi. Evidence which suggests that the plasmid occurs localized within the bacterial endosymbionts is presented. The plasmid contains the four genes that constitute the entire leucine operon. This fact makes it really unique since most plasmids are dispensable and lack genes that encode essential anabolic functions. Four more phloem-feeding aphid species also seem to contain homologous plasmids.Although further work is necessary, we hypothesize that this plasmid has appeared during the evolution of the symbiotic association between the aphid and the bacterial endosymbiont. The fact that this plasmid contains the entire leucine operon can be related to physiological evidence showing that the aphid host's diet of plant phloem is deficient in essential amino acids.  相似文献   

16.
D. Adams  A. E. Douglas 《Oecologia》1997,110(4):528-532
To explore the effect of rearing-plant species on the contribution of the symbiotic bacterium, Buchnera, to aphid performance, larvae of Aphis fabae that contained the bacteria (symbiotic aphids) and larvae experimentally deprived of the bacteria (aposymbiotic aphids) were reared on 16 plant species. Mortality of aphids was low on most plant species. The relative growth rate (RGR) of the larvae varied with plant species, and was generally depressed by elimination of the bacteria; the mean values of RGR varied between 0 and 0.29 μg μg−1 day−1 for symbiotic aphids and 0 and 0.17 μg μg−1 day−1 for aposymbiotic aphids. The extent to which RGR was depressed by aposymbiosis varied significantly between plant species, suggesting that aphid host plant may influence the contribution of the bacteria to plant utilisation. It is proposed that the bacteria may be particularly important on plants with phloem sap of high amino acid content of low quality, i.e. low concentrations of essential amino acids. Received: 18 August 1996 / Accepted: 13 January 1997  相似文献   

17.
18.
The symbiotic bacteria Buchnera provide their aphid hosts with tryptophan and other essential amino acids. Tryptophan production by Buchnera varied among 12 parthenogenetic clones of the pea aphid Acyrthosiphon pisum (Harris), as determined from both the incorporation of radioactivity from 14C‐anthranilate into tryptophan and the protein‐tryptophan growth rate of larval aphids on tryptophan‐free diet. The values of tryptophan production obtained for the two methods were correlated significantly with each other but not with the level of amplification of the Buchnera genes trpEG, which code for anthranilate synthase, a key enzyme in tryptophan biosynthetic pathway. This study provides the first direct demonstration of interclonal variation in production of any nutrient in an aphid–Buchnera symbiosis and indicates that a key aspect of Buchnera phenotype (tryptophan production) does not vary in a simple fashion with Buchnera genotype.  相似文献   

19.
Virtually all aphids maintain an obligate mutualistic symbiosis with bacteria from the Buchnera genus, which produce essential nutrients for their aphid hosts. Most aphids from the Lachninae subfamily have been consistently found to house additional endosymbionts, mainly Serratia symbiotica. This apparent dependence on secondary endosymbionts was proposed to have been triggered by the loss of the riboflavin biosynthetic capability by Buchnera in the Lachninae last common ancestor. However, an integral large‐scale analysis of secondary endosymbionts in the Lachninae is still missing, hampering the interpretation of the evolutionary and genomic analyses of these endosymbionts. Here, we analysed the endosymbionts of selected representatives from seven different Lachninae genera and nineteen species, spanning four tribes, both by FISH (exploring the symbionts’ morphology and tissue tropism) and 16S rRNA gene sequencing. We demonstrate that all analysed aphids possess dual symbiotic systems, and while most harbour S. symbiotica, some have undergone symbiont replacement by other phylogenetically‐distinct bacterial taxa. We found that these secondary associates display contrasting cell shapes and tissue tropism, and some appear to be lineage‐specific. We propose a scenario for symbiont establishment in the Lachninae, followed by changes in the symbiont's tissue tropism and symbiont replacement events, thereby highlighting the extraordinary versatility of host‐symbiont interactions.  相似文献   

20.
The facultative endosymbionts Hamiltonella defensa and Regiella insecticola are commonly found in aphids. They are linked with various ecological benefits but generally occur at low prevalence, which indicates a possible harbouring cost. Little is known about how the presence of facultative endosymbionts is reflected in honeydew composition. Honeydew is the key mediator of the mutualism between aphids and their tending ants. The present study examines whether endosymbionts have an influence on aphid honeydew quality by comparing the amino acid and carbohydrate concentrations between infected and uninfected aphids. To this end, two genetic lines of the aphid Aphis fabae Scopoli are experimentally infected with different strains of Hamiltonella and Regiella. Infected aphids are shown to have reduced concentrations of amino acids in the honeydew compared with uninfected aphids. However, the presence of endosymbionts has no effect on the absolute amount of carbohydrates produced. Nevertheless, interclonal variation in honeydew composition between aphid genotypes is observed for both carbohydrate and amino acid production. These results imply that the nutritional value of honeydew depends on aphid genotype, as well as on the presence of secondary bacterial endosymbionts, which suggests that there is a physiological cost of harbouring endosymbionts and which could also impact aphid attractiveness to tending ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号