首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The beta-amyloid peptide is derived from a larger membrane bound protein and accumulates as amyloid in Alzheimer's diseased brains. beta-amyloid precursor protein (beta APP) proteolytically processed during constitutive secretion cannot be a source of deposited amyloid because this processing results in cleavage within the amyloidogenic peptide. To see if other secretory pathways could be responsible for generating potentially amyloidogenic molecules we tested the possibility that beta APP is targeted to the regulated secretory pathway. Stable AtT20 cell lines expressing exogenous human beta APP were genetically engineered. These cells were labeled with [35S]-methionine, and chased in the presence or absence of secretagogue. The beta APP both inside the cells and released from the cells was analyzed by immunoprecipitation and gel analysis. Quantitation of autoradiograms showed that virtually all of the synthesized beta APP was secreted by the constitutive pathway, and that no detectable (less than 1%) beta APP was targeted to the regulated secretory pathway.  相似文献   

4.
This study aims to elucidate the signaling pathway for insulin-like growth factor-1 (IGF-1) in cultured neonatal rat cardiomyocytes and particularly the role of IGF-1 in cardiac apoptosis. IGF-1 stimulated polyphosphoinositide turnover, translocation of protein kinase C (PKC) isoforms (alpha, epsilon, and delta) from the soluble to the particulate fraction, activation of phospholipid-dependent and Ca(2+)-, phospholipid-dependent PKC, and activation of the extracellular-regulated kinase (ERK). IGF-1 attenuated sorbitol-induced cardiomyocyte viability and nuclear DNA fragmentation. These antiapoptotic effects of IGF-1 were blocked by PD-098059 (an MEK inhibitor) but not by bisindolylmaleimide I (BIM, a specific PKC inhibitor). The ERK pathway may therefore be an important component in the mechanism whereby IGF-1 exerts its antiapoptotic effect on the cardiomyocyte.  相似文献   

5.
6.
Aquaporin-1 (AQP1) channels contribute to osmotically induced water transport in several organs including the kidney and serosal membranes such as the peritoneum and the pleura. In addition, AQP1 channels have been shown to conduct cationic currents upon stimulation by cyclic nucleotides. To date, the short term regulation of AQP1 function by other major intracellular signaling pathways has not been studied. In the present study, we therefore investigated the regulation of AQP1 by protein kinase C. AQP1 wild type channels were expressed in Xenopus oocytes. Water permeability was assessed by hypotonic challenges. Activation of protein kinase C (PKC) by 1-oleoyl-2-acetyl-sn-glycerol (OAG) induced a marked increase of AQP1-dependent water permeability. This regulation was abolished in mutated AQP1 channels lacking both consensus PKC phosphorylation sites Thr(157) and Thr(239) (termed AQP1 DeltaPKC). AQP1 cationic currents measured with double-electrode voltage clamp were markedly increased after pharmacological activation of PKC by either OAG or phorbol 12-myristate 13-acetate. Deletion of either Thr(157) or Thr(239) caused a marked attenuation of PKC-dependent current increases, and deletion of both phosphorylation sites in AQP1 DeltaPKC channels abolished the effect. In vitro phosphorylation studies with synthesized peptides corresponding to amino acids 154-168 and 236-250 revealed that both Thr(157) and Thr(239) are phosphorylated by PKC. Upon stimulation by cyclic nucleotides, AQP1 wild type currents exhibited a strong activation. This regulation was not affected after deletion of PKC phosphorylation sites in AQP1 DeltaPKC channels. In conclusion, this is the first study to show that PKC positively regulates both water permeability and ionic conductance of AQP1 channels. This new pathway of AQP1 regulation is independent of the previously described cyclic nucleotide pathway and may contribute to the PKC stimulation of AQP1-modulated processes such as endothelial permeability, angiogenesis, and urine concentration.  相似文献   

7.
8.
Erythrophagocytosis induces in monocytes-macrophages the synthesis of stress proteins including the classical heat shock proteins (HSPs) and heme oxygenase (HO). To evaluate the role of oxygen radicals in this induction, we used the antioxidant flavonoids quercetin and kaempferol. These compounds inhibited HSP and HO synthesis, the latter being more sensitive. Quercetin and kaempferol also are inhibitors of protein kinase C (PKC). In order to determine whether inhibition of stress protein synthesis by flavonoids was mediated by their antioxidant properties or by PKC inhibition, we also tested more specific PKC antagonists, staurosporine and H-7. Staurosporine (SS) and H-7 decreased the synthesis of HSP70 and HSP83 but had no effect on HO. These data suggest that (1) erythrophagocytosis-related oxygen radicals are involved in the induction of the stress response in phagocytic cells, (2) the induction of HSPs and HO is differentially regulated, and (3) the effects of flavonoids on HO are linked to their scavenging activity rather than to PKC modulation.  相似文献   

9.
BACKGROUND: A growing number of kinases are now known to be controlled by two phosphorylation switches, one on a loop near the entrance to the active site and a second on the carboxyl terminus. For the protein kinase C (PKC) family of enzymes, phosphorylation at the activation loop is mediated by another kinase but the mechanism for carboxy-terminal phosphorylation is still unclear. The latter switch contains two phosphorylation sites - one on a 'turn' motif and the second on a conserved hydrophobic phosphorylation motif - that are found separately or together in a number of other kinases. RESULTS: Here, we investigated whether the carboxy-terminal phosphorylation sites of a conventional PKC are controlled by autophosphorylation or by another kinase. First, kinetic analyses revealed that a purified construct of the kinase domain of PKC betaII autophosphorylated on the Ser660 residue of the hydrophobic phosphorylation motif in an apparently concentration-independent manner. Second, kinase-inactive mutants of PKC did not incorporate phosphate at either of the carboxy-terminal sites, Thr641 or Ser660, when expressed in COS-7 cells. The inability to incorporate phosphate on the hydrophobic site was unrelated to the phosphorylation state of the other key phosphorylation sites: kinase-inactive mutants with negative charge at Thr641 and/or the activation-loop position were also not phosphorylated in vivo. CONCLUSIONS: PKC betaII autophosphorylates at its conserved carboxy-terminal hydrophobic phosphorylation site by an apparently intramolecular mechanism. Expression studies with kinase-inactive mutants revealed that this mechanism is the only one responsible for phosphorylating this motif in vivo. Thus, conventional PKC autoregulates the carboxy-terminal phosphorylation switch following phosphorylation by another kinase at the activation loop switch.  相似文献   

10.
11.
Disruption of iron homeostasis at the levels of intestinal absorption or erythropoiesis contributes to cadmium toxicity. Cellular iron homeostasis in metazoans is maintained by the iron regulatory proteins (IRPs) that regulate the synthesis of proteins involved in the transport, use, and storage of iron. The effect of cadmium intoxication on this regulatory system has been investigated in a cellular model of human epithelium. Cadmium exposure of HeLa cells did not activate the IRPs; rather, the amount of these proteins relative to that of housekeeping proteins decreased. Accordingly, the transferrin receptor mRNA level decreased upon cadmium insult. In a more integrated investigation, separate groups of mice had free access to different doses of cadmium in drinking water for 3 weeks. Cadmium accumulated in all analyzed organs, but its concentration in mouse tissues did not correlate with changes of the activity of the IRPs. The intoxicated mice did not show any sign of anemia, indicating that iron homeostasis was not immediately disrupted after the onset of cadmium accumulation. These data establish that cadmium destabilizes IRPs in mammalian cells, but that iron imbalance is not an early event of cadmium intoxication.  相似文献   

12.
Cross-linking of receptor bound IgE antibodies by multivalent antigen (DNP8-BSA) on PB-3c cells leads to an increase of cytosolic calcium ((Ca2+)i). Active tumor promoting phorbol esters and teleocidin which specifically activate the phospholipid Ca2+-sensitive protein kinase (PKC), inhibited the antigen-mediated rise in (Ca2+)i and induced a time and dose-dependent translocation of cytosolic PKC to membranes of the PB-3c cells as determined by enzyme activity or immunoblotting using a polyclonal anti-PKC antibody. This TPA concentration did not affect the subcellular distribution of PKC, although 1 nM of 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited to 50% the antigen-mediated increase in (Ca2+)i. The concentration of TPA required to induce a half-maximal subcellular redistribution of immunodetectable PKC activity was an order of magnitude greater than the half-maximal dose required to inhibit the antigen-mediated increase in (Ca2+)i. These data demonstrate that the TPA-dependent activation of PKC is not directly coupled to its translocation to membranes.  相似文献   

13.
J C Fearn  A C King 《Cell》1985,40(4):991-1000
Phorbol esters specifically reduce the binding of epidermal growth factor to surface receptors in intact cells, but not when added directly to isolated membranes. We show that after treatment of intact cells with phorbol myristate acetate, 125I-EGF binding is reduced in membranes prepared subsequently. High-affinity binding of 125I-EGF is modulated by an intracellular calcium-dependent regulatory process. Preventing calcium entry with EGTA or enhancing intracellular calcium with A23187 in intact cells modulates EGF receptor affinity in membranes isolated subsequently. Also, EGTA attenuates the usual inhibition of EGF binding caused by phorbol esters. Membrane preparations do not respond to phorbol ester treatment because the calcium- and phospholipid-dependent protein kinase C is removed or inactivated during membrane isolation. Reconstitution of unresponsive membranes with purified C kinase alters phosphorylation of the EGF receptor and restores the inhibitory effect of phorbol esters on 125I-EGF binding previously observed only in intact cells. Thus, activation of the Ca++-dependent enzyme, C kinase, modulates EGF receptor affinity, possibly via altered receptor phosphorylation.  相似文献   

14.
We demonstrated previously that thrombin stimulation of endothelial cells activates a membrane-associated, Ca2+-independent phospholipase A2 (iPLA2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids. We report that incubation of human coronary artery endothelial cells (HCAEC) with phorbol 12-myristate 13-acetate (PMA) to activate protein kinase C (PKC) resulted in hydrolysis of cellular phospholipids similar to that observed with thrombin stimulation (0.05 IU/ml; 10 min). Thrombin stimulation resulted in a decrease in arachidonylated plasmenylcholine (2.7 ± 0.1 vs. 5.3 ± 0.4 nmol PO4/mg of protein) and plasmenylethanolamine (7.5 ± 1.0 vs. 12.0 ± 0.9 nmol PO4/mg of protein). Incubation with PMA resulted in decreases in arachidonylated plasmenylcholine (3.2 ± 0.3 nmol PO4/mg of protein) and plasmenylethanolamine (6.0 ± 1.0 nmol PO4/mg of protein). Incubation of HCAEC with the selective iPLA2 inhibitor bromoenol lactone (5 mM; 10 min) inhibited accelerated plasmalogen phospholipid hydrolysis in response to both PMA and thrombin stimulation. Incubation of HCAEC with PMA (100 nM; 5 min) resulted in increased arachidonic acid release (7.1 ± 0.3 vs. 1.1 ± 0.1%) and increased production of lysoplasmenylcholine (1.4 ± 0.2 vs. 0.6 ± 0.1 nmol PO4/mg of protein), similar to the responses observed with thrombin stimulation. Downregulation of PKC by prolonged exposure to PMA (100 nM; 24 h) completely inhibited thrombin-stimulated increases in arachidonic acid release (7.1 ± 0.6 to 0.5 ± 0.1%) and lysoplasmenylcholine production (2.0 ± 0.1 to 0.2 ± 0.1 nmol PO4/mg of protein). These data suggest that PKC activates iPLA2 in HCAEC, leading to accelerated plasmalogen phospholipid hydrolysis and increased phospholipid metabolite production. lysophospholipids; cell signaling; phospholipid metabolism; arachidonic acid  相似文献   

15.

Background

While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role.

Methods

Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1β and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed.

Results

Secretion of IL-6, IL-8, and TNF-α, but not TGF-β1, was increased by IL-1β stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-α production in response to IL-1β treatment. Neither IL-1β nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and α-smooth muscle actin.

Conclusion

Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-α secretion is not regulated by cyclosporine in vitro; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1β did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.  相似文献   

16.
We recently have demonstrated that EGF receptor (EGFR)-induced cell motility requires receptor kinase activity and autophosphorylation (P. Chen, K. Gupta, and A. Wells. 1994. J. Cell Biol. 124:547-555). This suggests that the immediate downstream effector molecule contains a src homology-2 domain. Phospholipase C gamma (PLC gamma) is among the candidate transducers of this signal because of its potential roles in modulating cytoskeletal dynamics. We utilized signaling-restricted EGFR mutants expressed in receptor devoid NR6 cells to determine if PLC activation is necessary for EGFR-mediated cell movement. Exposure to EGF (25 nM) augmented PLC activity in all five EGFR mutant cell lines which also responded by increased cell movement. Basal phosphoinositide turnover was not affected by EGF in the lines which do not present the enhanced motility response. The correlation between EGFR-mediated cell motility and PLC activity suggested, but did not prove, a causal link. A specific inhibitor of PLC, U73122 (1 microM) diminished both the EGF- induced motility and PLC responses, while its inactive analogue U73343 had no effect on these responses. Both the PLC and motility responses were decreased by expression of a dominant-negative PLC gamma-1 fragment in EGF-responsive infectant lines. Lastly, anti-sense oligonucleotides (20 microM) to PLC gamma-1 reduced both responses in NR6 cells expressing wild-type EGFR. These findings strongly support PLC gamma as the immediate post receptor effector in this motogenic pathway. We have demonstrated previously that EGFR-mediated cell motility and mitogenic signaling pathways are separable. The point of divergence is undefined. All kinase-active EGFR mutants induced the mitogenic response while only those which are autophosphorylated induced PLC activity. U73122 did not affect EGF-induced thymidine incorporation in these motility-responsive infectant cell lines. In addition, the dominant-negative PLC gamma-1 fragment did not diminish EGF-induced thymidine incorporation. All kinase active EGFR stimulated mitogen-activated protein (MAP) kinase activity, regardless of whether the receptors induced cell movement; this EGF-induced MAP kinase activity was not affected by U73122 at concentrations that depressed the motility response. Thus, the signaling pathways which lead to motility and cell proliferation diverge at the immediate post-receptor stage, and we suggest that this is accomplished by differential activation of effector molecules.  相似文献   

17.
We placed a specific inhibitor of cyclic AMP-dependent protein kinase (PKA) under the control of a prestalk-specific promoter. Cells containing this construct form normally patterned slugs, but under environmental conditions that normally trigger immediate culmination, the slugs undergo prolonged migration. Slugs that eventually enter culmination do so normally but arrest as elongated, hairlike structures that contain neither stalk nor spore cells. Mutant cells do not migrate to the stalk entrance when codeveloped with wild-type cells and show greatly reduced inducibility by DIF, the stalk cell morphogen. These results suggest that the activity of PKA is necessary for the altered pattern of movement of prestalk cells at culmination and their differentiation into stalk cells. We propose a model whereby a protein repressor, under the control of PKA, inhibits precocious induction of stalk cell differentiation by DIF and so regulates the choice between slug migration and culmination.  相似文献   

18.
The exact physiological role of metallothionein (MT) is not clear. It has been suggested that these low-molecular-weight, highly inducible, heavy-metal-binding proteins serve in the regulation of intracellular Zn metabolism. Among the Zn-requiring systems are several enzymes involved in DNA replication and repair. Therefore, during periods of active DNA synthesis there is likely to be an increased demand for Zn, which could be met by elevated MT synthesis. For that reason, we examined whether stimulation of cellular proliferation leads to increased expression of MT. We report here that treatment of cultured mammalian cells with serum growth factors and activators of protein kinase C, all of which are known to have growth stimulatory activity, led to induction of MT mRNA. One of the required steps in the signal transduction pathways triggered by these agents, ending in MT induction, appears to be the activation of protein kinase C.  相似文献   

19.
The v-sis transforming gene encodes the woolly monkey homologue of human platelet-derived growth factor (PDGF) polypeptide 2. After its synthesis on membrane bound polyribosomes, the glycosylated precursor dimerizes in the endoplasmic reticulum and travels through the Golgi apparatus. At the cell periphery, the precursor is processed to yield a dimer structurally analogous to biologically active PDGF. Small amounts of two incompletely processed forms are detectable in tissue culture fluids of simian sarcoma virus (SSV) transformants. However, the vast majority remains cell associated. Thus, this growth factor-related transforming gene product is not a classical secretory protein. These findings define possible cellular locations where the transforming activity of the sis-PDGF-2 protein may be exerted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号