首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
钠通道及其相关疾病综合征   总被引:3,自引:1,他引:2  
钠通道是分布于可兴奋性细胞膜上的一种重要的阳离子通道,其开放控制着动作电位的去极化相,并积极参与了细胞的兴奋、收缩、分泌和突触传递等高度有序的特异性功能。最近研究表明许多困扰人类的家族性遗传病就是因为钠通道发生了基因突变而引起的。简要地综述了钠通道的结构及其目前已发现的相关疾病综合征。并描述了从动物毒素中获取治疗药物的应用前景。  相似文献   

2.
钠通道在各类神经元上高表达,参与细胞多种生理功能的调节,是神经元实现功能活动的基本单位.未成熟神经元上钠/钙通道所诱发和自发的电位活动对后期的发育成熟至关重要.然而,发育中的钠通道是否参与神经干细胞(neural stem cells, NSCs)分化的调控尚不清楚.本研究证明,未成熟的钠通道参与NSCs分化调控.Western印迹结果显示,在分化第1,3,5,7 d的NSCs上钠通道和胞外信号调节激酶(ERK)的蛋白表达与分化时间正相关.免疫组化结果发现,与对照组比较,加入电压门控钠通道阻断剂TTX可明显下调NeuN、GFAP和Gal-c在NSCs中的表达(P<0.05),提示钠通道参与NSCs分化的调控.当采用veratridine激动钠通道后,激光共聚焦检测到细胞内Ca2+浓度明显升高,免疫组化和Western印迹结果显示细胞内Ca2+浓度明显升高,p-ERK表达量明显上调;相反,TTX可明显阻断Veratridine所引起的细胞内Ca2+浓度上调,并使p-ERK峰值明显降低和延后(P<0.05).研究结果表明,未成熟钠通道可通过激活ERK信号途径促进NSCs的分化.钠通道的这种作用可能是由钙离子介导的,其详尽机制有待进一步研究.  相似文献   

3.
张存环  刘朗  彭雄  郄杏桃  陈茂华 《昆虫学报》2022,65(11):1459-1468
【目的】通过分析禾谷缢管蚜Rhopalosiphum padi钠通道辅助亚基对钠通道功能的影响,探究辅助亚基在钠离子通道的门控性质中的作用。【方法】分别显微注射dsRpNavH1和dsRpNavH2对钠通道基因RpNavH1和RpNavH2进行RNAi后,采用实时定量PCR(qRT-PCR)技术测定禾谷缢管蚜成蚜5个钠通道辅助亚基基因(RpTEH1,RpTEH2,RpTEH3,RpTEH4和RpTipE)的表达量;利用qRT-PCR技术和杀虫剂生物测定分别测定RNAi干扰RpTipE对禾谷缢管蚜成蚜钠通道及其辅助亚基基因表达量以及LC50浓度高效氯氟氰菊酯敏感性的影响;利用双电压钳技术检测非洲爪蟾Xenopus laevis卵母细胞单独注射果蝇Drosophila钠通道基因DmNav22 cRNA及DmNav22 cRNA分别与果蝇钠通道辅助亚基基因DmTipE及禾谷缢管蚜钠通道辅助亚基基因RpTEH2,RpTEH3,RpTEH4和R...  相似文献   

4.
昆虫钠通道的结构和与击倒抗性有关的基因突变   总被引:13,自引:3,他引:10  
击倒抗性(kdr)是指昆虫和其他节肢动物由于它们的神经系统对DDT和拟除虫菊酯类杀虫剂的敏感性降低而引起的抗性。电压敏感的钠通道是DDT和拟除虫菊酯类杀虫剂的主要靶标。已知拟除虫菊酯是通过改变位于神经膜上的这类通道而发挥其杀虫效果的,钠通道基因的点突变是产生kdr抗性的主要原因。40年来kdr抗性一直是重要的研究课题,但近10年来在kdr分子生物学方面取得了很大进展。本文主要综述了1996年以来所取得的新进展,着重于钠通道的结构、在14种害虫中与kdr抗性相关的钠通道基因突变及其氨基酸序列的多态性。这些结果有助于对拟除虫菊酯改变钠通道的功能及其机理作进一步探究。  相似文献   

5.
氯氰菊酯异构体对黑胸大蠊神经钠钾通道的调制作用   总被引:3,自引:3,他引:0  
用电生理油间隙、单纤维、电压钳位技术研究了氯氰菊酯顺、反异构体对黑胸大蠊[Periplaneta fulginosa(Serville)]中枢神经大轴突钠通道的调节抑制作用,并探讨了反式异构体与钾通道的作用关系.结果证明:1.2×10-3mol/L顺式异构体作用于钠通道,先使其开放,然后抑制.2.出现钠尾电流,表明有更多数量的钠通道处于开放状态.3.5.4×10-4mol/L反式异构体可阻滞迟缓钾通道并降低钾电流IK的峰值.  相似文献   

6.
心肌钠,钾离子通道的分子生物学进展   总被引:1,自引:0,他引:1  
分子生物学和电生理学(膜片钳技术)的联合应用研究对于阐明心肌钠、钾离子通道的分子结构与功能表达已取得突破性进展。现已证明,心肌钠离子通道主要由基β-亚单位作为功能性单位以表达出钠通道竭尽成分,其α-亚单位的存在可能改变钠电流的动力学性质。多种钾离子通道及其电流成分亦已在心肌细胞上鉴定出来。分子生物学研究已揭示出与心肌钠、钾通道功能表达有关的基因结构。在生理(例如心肌发生学过程中)情况下或病变心肌时  相似文献   

7.
Li CZ  Wang HW  Liu JL  Liu K  Yang ZF  Liu YM 《生理学报》2001,53(2):111-116
应用膜片箝技术记录游离豚鼠心肌细胞的钠通道电流,细胞内微电极技术记录心室乳头肌的动作电位和心电图机记录豚鼠的心电图,使用与心肌;细胞钠通道有高度亲和力的海葵毒素(sea anemone toxin,ATXⅡ)改变钠通道开放的动力过程,从三个水平来研究钠通道,动作电位,心电图变化的关系,并试图探讨长QT综合征(long QT syndrome,LQTs)的发病机制,结果显示,ATXⅡ使钠通道的开放频率增加,钠通道中“长时间开放模式”的开放时间常数增大,动人电位的持续时间APD50和APD50也分别增加了23%和27%,ATXⅡ使动物心电图QT间期延长18.6%,QTc(校正的QT间期)增大18.9%,这些结果提示,钠通道动力过程的变化对动作电位和心电图QT间期有重要影响,钠通道功能或结构的变异可能是临床上部分长QT综合征产生的原因。  相似文献   

8.
心肌细胞晚钠通道的四种开放模式及其对动作电位的影响   总被引:8,自引:4,他引:4  
李慈珍  王兴德 《生理学报》1997,49(3):241-248
应用膜片箝技术记录豚鼠游离心室肌细胞钠通道电流,发现晚钠通道电流可分为四种开放模式;单个短暂开放,散在开放,长时间长放和爆发型开放。它们的开放机率不一样,其中爆发型的机率为1/2000,其开放时间常数比前三种大。离细胞体的小片膜电压箝制实验中,亦可观察到晚钠通道的这四种开放模式,它们均可被TTX使波动现象基本消失,动作电位时程和有效不应期缩短,静息电位增加,表明晚钠通道的活动在动作电位平台期的形成  相似文献   

9.
应用膜片箝技术记录游离豚鼠心肌细胞钠通道电流, 细胞内微电极技术记录心室乳头肌的动作电位和心电图机记录豚鼠的心电图。使用与心肌细胞钠通道有高度亲和力的海葵毒素(sea anemone toxin, ATXⅡ)改变钠通道开放的动力过程, 从三个水平来研究钠通道、动作电位、心电图变化的关系, 并试图探讨长QT综合征(long QT syndrome, LQTs)的发病机制。结果显示: ATXⅡ使钠通道的开放频率增加, 钠通道中“长时间开放模式”的开放时间常数增大, 动作电位的持续时间APD50和APD90也分别增加了23%和27%。 ATXⅡ使动物心电图QT间期延长18.6%, QTc (校正的QT间期)增大18.9%。这些结果提示, 钠通道动力过程的变化对动作电位和心电图QT间期有重要影响, 钠通道功能或结构的变异可能是临床上部分长QT综合征产生的原因。  相似文献   

10.
胰岛β细胞是典型的兴奋性内分泌细胞,能响应机体葡萄糖水平的升高而分泌胰岛素,其功能受损会导致胰岛素分泌异常,进而引发多种疾病的发生,尤其与糖尿病(diabetes mellitus,DM)的发生密切相关。近年来对胰岛素分泌及调控过程的研究受到越来越广泛的关注,尤其在胰岛素分泌相关的离子通道——钾离子、钙离子通道方面,取得了重要进展,但对钠通道研究较少。钠通道是广泛分布于细胞膜上、亚型众多的一类离子通道,它们通过参与动作电位形成、物质运输和胞间通讯等过程影响细胞的多种生理功能。在此,对胰岛β细胞上钠通道的种类、生理特性、功能等方面的研究进展进行综述,从而为后续胰岛β细胞钠通道的相关研究提供新思路。  相似文献   

11.
电压门控型钠离子通道(Voltage-gated sodium channel,VGSC)广泛分布于兴奋性细胞,是电信号扩大和传导的主要介质,在神经细胞以及心肌细胞兴奋传导等方面发挥重要作用。钠离子通道结构和功能的异常会改变细胞的兴奋性,从而导致多种疾病的发生,如神经性疼痛、癫痫,以及心律失常等。目前临床上多采用钠离子通道抑制剂治疗上述疾病。近些年,研究人员陆续从动物的毒液中分离纯化出具有调控钠离子通道功能的神经毒素。这些神经毒素多为化合物或小分子多肽。现已有医药研发公司将这些天然的神经毒素进行定向设计改造成钠离子通道靶向药物用于临床疾病的治疗。此外,来源于七鳃鳗Lampetra japonica口腔腺的富含半胱氨酸分泌蛋白(Cysteine-rich buccal gland protein,CRBGP)也首次被证明能够抑制海马神经元和背根神经元的钠离子电流。以下针对钠离子通道疾病及其抑制剂生物学功能的最新研究进展进行分析归纳。  相似文献   

12.
陈斌  鲜鹏杰  乔梁  周勇 《昆虫学报》2015,58(10):1116-1125
昆虫电压门控钠离子通道(voltage-gated sodium channel)存在于所有可兴奋细胞的细胞膜上,在动作电位的产生和传导上起重要作用,是有机氯和拟除虫菊酯杀虫剂的靶标位点。在农业和医学害虫控制过程中,由于有机氯和拟除虫菊酯杀虫剂的广泛使用,抗药性问题日益突出。其中,由于钠离子通道基因突变,降低了钠离子通道对有机氯和拟除虫菊酯类杀虫剂的亲和性,从而产生击倒抗性(knock-down resistance, kdr),已成为抗性产生的重要机制之一。本文综述了昆虫钠离子通道的跨膜拓扑结构、功能、进化及其基因的克隆;更重要的是总结了已报道的40多种昆虫40个钠离子通道基因非同义突变,以及钠离子通道基因选择性mRNA剪接和编辑,以及它们与杀虫剂抗性的关系;也评述了钠离子通道基因突变引起蛋白质结构的改变,从而对杀虫剂抗性的影响机制。这些研究对于进一步鉴定与杀虫剂抗性相关的突变及抗性机制,开发有机氯和拟除虫菊酯类杀虫剂抗性分子监测方法具有重要意义。  相似文献   

13.
The voltage-gated sodium channel is the primary target site of pyrethroid insecticides. In some insects, super knockdown resistance (super-kdr) to pyrethroids is caused by point mutations in the linker fragment between transmembrane segments 4 and 5 of the para-type sodium channel protein domain II (IIS4-5). Here, we identify two mutations in the IIS4-5 linker of the para-type sodium channel of the whitefly, Bemisia tabaci: methionine to valine at position 918 (M918V) and leucine to isoleucine at position 925 (L925I). Although each mutation was isolated independently from strains >100-fold resistant to a pyrethroid (fenpropathrin) plus organophosphate (acephate) mixture, only L925I was associated with resistance in strains derived from the field in 2000 and 2001. The L925I mutation occurred in all individuals from nine different field collections that survived exposure to a discriminating concentration of fenpropathrin plus acephate. Linkage analysis of hemizygous male progeny of unmated heterozygous F1 females (L925I×wild-type) shows that the observed resistance is tightly linked to the voltage-gated sodium channel locus. The results provide a molecular tool for better understanding, monitoring and managing pyrethroid resistance in B. tabaci.  相似文献   

14.
Two amino acid substitutions (L1014F and M918T) in the voltage-gated sodium channel confer target-site resistance to pyrethroid insecticides in the peach potato aphid, Myzus persicae. Pyrethroid-resistant and -susceptible M. persicae clones with various combinations of these mutations were crossed under laboratory conditions, and the genotypes of aphid progeny were analysed by direct DNA sequencing of the IIS4-S6 region of the sodium channel gene. Segregation patterns showed that in aphids heterozygous for both L1014F and M918T, both mutations were present in the same resistance allele. Despite these mutations appearing largely recessive in other pest species, such aphids exhibited strong resistance to pyrethroids in leaf-dip bioassays. These results have important implications for the spread and management of pyrethroid resistance in field populations.  相似文献   

15.
Nine different voltage-gated sodium channel isoforms are responsible for inducing and propagating action potentials in the mammalian nervous system. The Nav1.7 channel isoform plays an important role in conducting nociceptive signals. Specific mutations of this isoform may impair gating behavior of the channel resulting in several pain syndromes. In addition to channel mutations, similar or opposite changes in gating may be produced by spider and scorpion toxins binding to different parts of the voltage-gated sodium channel. In the present study, we analyzed the effects of the α-scorpion toxin OD1 and 2 synthetic toxin analogs on the gating properties of the Nav1.7 sodium channel. All toxins potently inhibited channel inactivation, however, both toxin analogs showed substantially increased potency by more than one order of magnitude when compared with that of wild-type OD1. The decay phase of the whole-cell Na+ current was substantially slower in the presence of toxins than in their absence. Single-channel recordings in the presence of the toxins revealed that Na+ current inactivation slowed due to prolonged flickering of the channel between open and closed states. Our findings support the voltage-sensor trapping model of α-scorpion toxin action, in which the toxin prevents a conformational change in the domain IV voltage sensor that normally leads to fast channel inactivation.  相似文献   

16.
The voltage-gated sodium channel Nav1.7 is a genetically validated target for the treatment of pain with gain-of-function mutations in man eliciting a variety of painful disorders and loss-of-function mutations affording insensitivity to pain. Unfortunately, drugs thought to garner efficacy via Nav1 inhibition have undesirable side effect profiles due to their lack of selectivity over channel isoforms. Herein we report the discovery of a novel series of orally bioavailable arylsulfonamide Nav1.7 inhibitors with high levels of selectivity over Nav1.5, the Nav isoform responsible for cardiovascular side effects, through judicious use of parallel medicinal chemistry and physicochemical property optimization. This effort produced inhibitors such as compound 5 with excellent potency, selectivity, behavioral efficacy in a rodent pain model, and efficacy in a mouse itch model suggestive of target modulation.  相似文献   

17.
Ion channels-related diseases   总被引:4,自引:0,他引:4  
There are many diseases related to ion channels. Mutations in muscle voltage-gated sodium, potassium, calcium and chloride channels, and acetylcholine-gated channel may lead to such physiological disorders as hyper- and hypokalemic periodic paralysis, myotonias, long QT syndrome, Brugada syndrome, malignant hyperthermia and myasthenia. Neuronal disorders, e.g., epilepsy, episodic ataxia, familial hemiplegic migraine, Lambert-Eaton myasthenic syndrome, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia may result from dysfunction of voltage-gated sodium, potassium and calcium channels, or acetylcholine- and glycine-gated channels. Some kidney disorders, e.g., Bartter's syndrome, policystic kidney disease and Dent's disease, secretion disorders, e.g., hyperinsulinemic hypoglycemia of infancy and cystic fibrosis, vision disorders, e.g., congenital stationary night blindness and total colour-blindness may also be linked to mutations in ion channels.  相似文献   

18.
Voltage-gated sodium channels are heteromeric transmembrane proteins involved in the conduction of sodium ion currents in response to membrane depolarization. In humans, nine homologous genes, SCN1A–11A, which encode different isoforms of the voltage-gated sodium channel family, are known. Sodium channel isoforms exhibit different kinetic properties that determine different types of neurons. Mutations in different channels are described in patients with various congenital disorders, from epilepsy to congenital insensitivity to pain. This review presents an analysis of the current literature on the properties of different isoforms of voltage-gated sodium channels and associated diseases.  相似文献   

19.
The activity of voltage-gated sodium channels contributes to onset and duration of the cardiac action potential through an intricate balance with the activity of other ion channels. Activation of sodium channels leads to membrane depolarization and Phase 0 of the cardiac action potential. Sodium channel fast inactivation contributes to Phase 1, the initial repolarization. Slow inactivation and closed state fast inactivation determine channel availability and, thus, overall membrane excitability. Defects in any of these biophysical states or transitions between them, imparted by (over 170 reported thus far, including both Long QT3 and Brugada syndromes) mutations in the (over 2000) amino acids that compose the sodium channel protein, can lead to channel dysfunction that manifests as an abnormal cardiac action potential and electrocardiogram. A causal relationship between several such abnormalities and the panoply of sodium channel mutations have led to a greater understanding of the molecular underpinnings of cardiac arrhythmias as well as a deeper appreciation for the intricacies of sodium channel function. Here, we review the literature regarding these causal relationships from a perspective of the biophysical properties of sodium channels.  相似文献   

20.
The activity of voltage-gated sodium channels contributes to onset and duration of the cardiac action potential through an intricate balance with the activity of other ion channels. Activation of sodium channels leads to membrane depolarization and Phase 0 of the cardiac action potential. Sodium channel fast inactivation contributes to Phase 1, the initial repolarization. Slow inactivation and closed state fast inactivation determine channel availability and, thus, overall membrane excitability. Defects in any of these biophysical states or transitions between them, imparted by (over 170 reported thus far, including both Long QT3 and Brugada syndromes) mutations in the (over 2000) amino acids that compose the sodium channel protein, can lead to channel dysfunction that manifests as an abnormal cardiac action potential and electrocardiogram. A causal relationship between several such abnormalities and the panoply of sodium channel mutations have led to a greater understanding of the molecular underpinnings of cardiac arrhythmias as well as a deeper appreciation for the intricacies of sodium channel function. Here, we review the literature regarding these causal relationships from a perspective of the biophysical properties of sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号