共查询到20条相似文献,搜索用时 0 毫秒
1.
Polar constituents of celery seed 总被引:7,自引:0,他引:7
From the water-soluble portion of the methanol extract of celery seed (fruit of Apium graveolens L.) five sesquiterpenoid glucosides (celerioside A-E) and three phthalide glycosides (celephtalide A-C) were isolated together with six aromatic compound glucosides, two norcarotenoid glucosides and a lignan glucoside. Their structures were determined by spectral investigations. 相似文献
2.
Usov AI Slanchev KI Smirnova GP Ivanova AP Stefanov KL Popov SS Andreev SN 《Bioorganicheskaia khimiia》2002,28(2):168-172
Eighteen compounds were identified by GC-MS of their trimethylsilyl derivatives in n-butanolic extract from the biomass of Botryllus schlosseri. Three of them, 5-oxoproline, 5-hydroxyhydantoin, and kinurenic acid, were found in marine invertebrates for the first time. In addition to cellulose, the biomass was also shown to contain complex water-soluble sulfated polysaccharides. These were extracted and fractionated, and sulfate content and monosaccharide composition were determined in the fractions; fucose, xylose, galactose, mannose, glucose, glucosamine, galactosamine, and uronic acids were found. Unlike several other tunicate species, Botryllus schlosseri does not seem to contain any simple galactan sulfate. 相似文献
3.
Polar auxin transport is critical for normal embryo development in angiosperms. It has been proposed that auxin accumulates dynamically at specific positions, which in early Arabidopsis embryos correlates with developmental decisions such as specification of the apical cell lineage, specification of the hypophysis, and differentiation of the two cotyledons. In conifers, pattern formation during embryo development is different, and includes a free nuclear stage, nondividing suspensor cells, presence of tube cells, lack of hypophysis and formation of a crown of cotyledons surrounding the shoot apical meristem. We have recently shown that polar auxin transport is important for normal embryo development also in conifers. Here we suggest a model where auxin is transported from the suspensor cells to the embryonal mass during early embryogeny in conifers. This transport is essential for the developmental decisions of the tube cells and the suspensor, and affects both the amount of programmed cell death and the embryo patterning.Key words: conifer, embryo development, 1-N-naphtylphthalamic acid (NPA), patterning, polar auxin transport, programmed cell death, somatic embryogenesis, suspensorIn the model plant Arabidopsis thaliana auxin is transported, already from the first cell division of the zygote, from the basal cell to the apical cell, where it is involved in establishing the identity of the apical cell lineage. At the 32-cell stage the polar auxin transport is reversed, leading to an auxin accumulation in the uppermost suspensor cell, which occurs concomitantly with the specification of the hypophysis. During the heart stage auxin is transported towards the cotyledonary primordia, giving positional information about the cotyledon outgrowth.1 Formation of the apical-basal embryonic pattern during early embryogeny in conifers is quite different from that in Arabidopsis and proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass, the embryonal tube cells and terminally differentiated nondividing suspensor cells.2The somatic embryo system of Picea abies (Norway spruce) includes a stereotyped sequence of developmental stages, resembling zygotic embryogeny, which can be synchronized by specific treatments.3,4 We are using this as a model system for elucidating the regulation of embryo development in conifers.2 Early somatic embryos differentiate from proembryonic masses (PEMs) after withdrawal of the plant growth regulators (PGRs) auxin and cytokinin (Fig. 1A and B). We have previously shown that the organisation of the apical-basal polarity in early embryos is dependent on a gradient of PCD from the embryonal tube cells committed to death, to the cell corpses at the basal end of the suspensor.5–7 Dysregulation of the PCD leads to aberrant apical-basal patterning.Open in a separate windowFigure 1Model for polar auxin transport control of early embryo patterning in conifers. (A) Embryogenic cultures proliferate as proembryonic masses (PEMs) in the presence of the plant growth regulators (PGRs) auxin and cytokinin. (B) Early embryos start to differentiate from PEMs after withdrawal of PGRs. Endogenous auxin is transported to the newly formed embryonal mass. (C) Early embryos are formed within two weeks in PGR-free medium. Early embryos have a distinct embryonal mass, tube cells and a suspensor. IAA is transported from the suspensor and the tube cells to the embryonal mass. (D) Fully matured cotyledonary embryos are formed after 5–6 weeks on maturation medium. (E) Treatment with NPA blocks the polar auxin transport to the embryonal mass, leading to an IAA accumulation in the suspensor cells, tube cells and perhaps also in the cells of the embryonal mass most adjacent to the tube cells. (F) Embryos with supernumerary suspensor cells are formed if polar auxin transport is inhibited only during the earliest stages of suspensor differentiation. (G) Embryos with meristematic cells in the suspensor are formed if polar auxin transport is inhibited during both differentiation and elongation of the suspensor. We assume that these abnormalities abort further development and maturation of viable embryos. em, embryonal mass; s, suspensor; tc, tube cells. Green arrows indicate polar auxin transport, T indicates blocked polar auxin transport, green shadings indicate auxin accumulation.We recently showed that in embryogenic cultures of Norway spruce treated with the polar auxin transport inhibitor NPA, the number of cells undergoing PCD decreases. As a consequence the balance between the number of cells in the embryonal mass and the number of cells in the suspensor develop abnormally, and concomitantly the endogenous free IAA content increases almost two-fold.8In order to visualise the IAA accumulation within the embryos we used a -318 bp deletion of the auxin-responsive IAA4/5 promoter from Pisum sativum (pea), previously characterized by Oeller et al.,9 and Ballas et al.,10 fused to the GUS reporter gene.11 In tobacco (Nicotiana tabacum) the promoter is expressed in rapidly elongating hypocotyls,12 (our unpublished observations) and strong induction by auxin is clear in elongating zones of both roots and hypocotyls in transgenic pIAA4/5-GUS Arabidopsis plants.11 However, to our knowledge, expression of IAA4/5 has not been reported in embryonal shoot apical meristems. Hence, the pIAA4/5-GUS may preferentially be used as a biosensor of auxin activity in non-meristematic cells during spruce embryo development. During normal somatic embryo development in spruce, pIAA4/5-GUS activity is detected in PEMs, tube cells and suspensor cells, but not in the embryonal mass. Early embryos of Norway spruce that are treated with NPA show increased pIAA4/5-GUS activity in tube cells and suspensor cells (unpublished), well in line with the increment of free IAA levels.Our results indicate that IAA under normal conditions is transported from the suspensor cells to the cells in the embryonal mass (Fig. 1B and C). NPA-treatment blocks this polar transport of endogenous IAA, which results in an accumulation of IAA and increased pIAA4/5-GUS activity in the suspensor cells, the tube cells, and perhaps also in the cells of the embryonal mass most adjacent to the tube cells (Fig. 1F and G). Blocked polar auxin transport during early differentiation of the suspensor stimulates abnormal cell divisions of the meristematic cells most adjacent to the tube cells or perhaps even of the tube cells themselves. Consequently, embryos with supernumerary tube and suspensor cells are formed (Fig. 1F). If the polar auxin transport is blocked for a longer time, i.e., during both differentiation and elongation of the suspensor, the auxin accumulation leads to maintenance of meristematic fate and a failure to undergo PCD (Fig. 1G).It has been proposed that the fate of the suspensor cells is regulated by signals from the embryo proper which impede developmental potential and initiate PCD.13 In accordance, we assume that the abnormal embryo morphologies formed after NPA-treatment may result from adverse inhibitory signals from the embryonal mass. 相似文献
4.
Boot KJ Libbenga KR Hille SC Offringa R van Duijn B 《Journal of experimental botany》2012,63(11):4213-4218
In higher plants, cell-to-cell polar auxin transport (PAT) of the phytohormone auxin, indole-3-acetic acid (IAA), generates maxima and minima that direct growth and development. Although IAA is present in all plant phyla, PAT has only been detected in land plants, the earliest being the Bryophytes. Charophyta, a group of freshwater green algae, are among the first multicellular algae with a land plant-like phenotype and are ancestors to land plants. IAA has been detected in members of Charophyta, but its developmental role and the occurrence of PAT are unknown. We show that naphthylphthalamic acid (NPA)-sensitive PAT occurs in internodal cells of Chara corallina. The relatively high velocity (at least 4-5 cm/h) of auxin transport through the giant (3-5 cm) Chara cells does not occur by simple diffusion and is not sensitive to a specific cytoplasmic streaming inhibitor. The results demonstrate that PAT evolved early in multicellular plant life. The giant Chara cells provide a unique new model system to study PAT, as Chara allows the combining of real-time measurements and mathematical modelling with molecular, developmental, cellular, and electrophysiological studies. 相似文献
5.
Polar transport of kinetin-8-14C occurred in segments of petioles, hypocotyls, and roots of radish (Raphanus sativus L.). The polarity was basipetal in petioles and hypocotyls and acropetal in roots. In segments excised from seedlings with fully expanded cotyledons, indole-3-acetic acid was required for polarity to develop. In hypocotyl segments isolated at this stage, basipetal and acropetal movements were equal during the first 12 hours of auxin treatment after which time acropetal movement declined. Pretreatment with auxin eliminated this delay in the appearance of polarity. In hypocotyl segments excised from seedlings with expanding cotyledons, exogenous auxin was unnecessary for polarity. Potassium cyanide abolished polarity at both stages of growth by allowing increased acropetal movement. The rate of accumulation of kinetin in receiver blocks was greater than the in vivo increase in cytokinin content of developing radish roots. 相似文献
6.
Summary The UV-B radiation (e.g. 337 nm) induced blue fluorescence (BF) and red chlorophyll fluorescence spectra (RF) of green leaves from plants with different leaf structure were determined and the possible nature and candidates of the blue fluorescence emission investigated. The blue fluorescence BF is characterized by a main maximum in the 450 nm region and in most cases by a second maximum/shoulder in the 530 nm region. The latter has been termed green fluorescence GF. The red chlorophyll fluorescence RF, in turn, exhibits two maxima in the 690 and 730 nm region. In general, the intensity of BF, GF and RF emission is significantly higher in the lower than the upper leaf side. The ratio of BF to RF emission (F450/F690) seems to vary from plant species to plant species. BF and GF emission spectra appear to be a mixed signal composed of the fluorescence emission of several substances of the plant vacuole and cell wall, which may primarily arise in the epidermis. Leaves with removed epidermis and chlorophyll-free leaves, however, still exhibit a BF and GF emission. Candidates for the blue fluorescence emission ( max near 450 nm) are phenolic substances such as chlorogenic acid, caffeic acid, coumarins (aesculetin, scopoletin), stilbenes (t-stilbene, rhaponticin), the spectra of which are shown. GF emission ( max near 530 nm) seems to be caused by substances like the alkaloid berberine and quercetin. Riboflavine, NADPH and phyllohydroquinoneK
1 seem to contribute little to the BF and GF emission as compared to the other plant compounds. Purified natural-carotene does not exhibit any blue fluorescence. 相似文献
7.
8.
Summary Mobilization of the plasmid ColE1 from cells containing a conjugative plasmid (such as F) requires the synthesis of ColE1 mob proteins, and the presence, in cis, of bom (basis of mobility), a region of ColE1 containing the origin of transfer (oriT). The process of ColE1 transfer is thought to resemble that of the conjugative plasmid F, although the plasmids share little sequence homology. In F, conjugation is preceded by a strand-specific nicking event at oriT. The nicked strand is then conducted to the recipient with the 5 end leading. This is believed also to occur with ColE1, but direct biochemical confirmation has been precluded by its small size (6.65 kb). To test this hypothesis genetically, a novel method, using a dv-based vector, has been devised to site-specifically integrate bom (or any other cloned sequence) into the chromosome of Escherichia coli. When provided with suitable mobilizing plasmids, such strains were found to transfer the chromosome in a polar way. From these data, the orientation of transfer of ColE1 was deduced and shown to be analogous to F. 相似文献
9.
Jerald J. Nair Anke Wilhelm Susanna L. Bonnet Johannes van Staden 《Bioorganic & medicinal chemistry letters》2017,27(22):4943-4951
There is a pressing need in antibiotic drug discovery for new drugs to counterbalance the effects of multidrug resistance. Plants represent a viable platform for such endeavors owing to their traditional relevance in infectious disease therapies as well as their vast chemical resources. As many as fifty different species of the Amaryllidaceae are discernible with such functions in traditional medicine, thirty-nine of which have been subjected to pharmacological evaluations. Submicromolar antibacterial activities for several of these plants have been the driving force behind studies targeting their active constituents. This review accounts for close to a hundred of such entities, mainly isoquinoline alkaloids, which have been the focus in assays of thirty different bacterial pathogens. Promising activities were detected in several instances, although disappointingly the submicromolar level could not be breached. Also considered are structure–activity relationships which have emerged within the various groups of Amaryllidaceae alkaloids. 相似文献
10.
Rocío Lambert Juan Miguel Cabello-Díaz Francisco Antonio Quiles Pedro Piedras 《Acta Physiologiae Plantarum》2016,38(11):266
The knowledge about the physiological function of plant nucleases is scarce besides that they have been involved in nucleic acid degradation related with programmed cell death processes. Cotyledons provide a suitable system to investigate this process and the changes associated to nutrient mobilization. Nuclease activities have been determined in French bean seedlings. The total nuclease activity in French bean cotyledons is lower than in embryonic axes; however, several nucleases were detected by in-gel nuclease activity assays with extracts from cotyledons of French bean and ssDNA as substrate. The nuclease activities induced during cotyledon senescence showed higher activity at neutral than at acidic pH. Five different nuclease genes belonging to S1/P1 family have been identified in French bean genome database named PVN1 to PVN5. Their relative expression in cotyledons has been determined from the start of imbibition to senescence, and three genes from this family showed expression in cotyledons. PVN1 was expressed during early stages of seedlings development, whereas PVN4 and PVN5 were expressed during cotyledons senescence. The removal of epicotyl in French bean seedlings resulted in a decrease in the activity and in the expression of the genes associated with the cotyledons senescence process, i.e. PVN4 and PVN5. At the same time, the mobilization of reserves in those cotyledons was slowed down. In the same way, the deficit in phosphate and nitrate during seedlings development led to an acceleration of induction of these genes at the same time that reserves were utilized early on the time. Therefore, the induction of PVN4 and PVN5, the two S1 nuclease genes involved in the process of cotyledon senescence, is related to nutrient mobilization, supporting a possible role for nucleic acids in nutrient recycling during cotyledon senescence. 相似文献
11.
Several plant sources were analysed to identify steroidal estrogens. Earlier reports of steroidal estrogens in these plants could not be confirmed by mass fragmentographic analysis. Monoglycerides were identified in the ‘estrogen-like’ fraction. 相似文献
12.
RK Joshi 《Chemistry & biodiversity》2012,9(8):1422-1424
Craniotome furcata (Link) O. Kuntze (Lamiaceae) has been reported worldwide as the only species of the genus Craniotome. Traditionally, this plant is used in the treatment of wounds. Craniosides A and B, buddlejasaponins I, and essential oils have been isolated from the genus Craniotome. 相似文献
13.
Here we present an overview of what is known about endogenous plant compounds that act as inhibitors of hormonal transport processes in plants, about their identity and mechanism of action. We have also summarized commonly and less commonly used compounds of non-plant origin and synthetic drugs that show at least partial ‘specificity’ to transport or transporters of particular phytohormones. Our main attention is focused on the inhibitors of auxin transport. The urgent need to understand precisely the molecular mechanism of action of these inhibitors is highlighted. 相似文献
14.
15.
A total of 41 stands was sampled for species composition and 29 of these stands for plant standing crop and net annual production at 7 sites on 6 arctic islands. Fourteen additional sites on 10 islands were studied in less detail.
Through polar ordination, three groupings were recognized: polar barrens with an average species richness of 6, a phytomass of 24 g m−2 , and a net annual production of 0.8 g m−2 . Comparable data for the cushion plant and snowflush communities were 9, 120, 3 and 13 species, 400 g m−2 , phytomass and 41 g m−2 net production respectively. Cryptogams are minor except within showflush communities.
The soils show no horizon development, arc alkaline, and are very tow in organic matter, nitrogen, and phosphorus. It is believed that the combination of limited soil moisture in mid-summer and very low nutrient levels are the primary reason for such low plant cover and plant production in these predominantly polar barren landscapes. Geologic substrate with an abundance of frost-shattered rock and topographic position are factors that control the limited availability of water. 相似文献
Through polar ordination, three groupings were recognized: polar barrens with an average species richness of 6, a phytomass of 24 g m
The soils show no horizon development, arc alkaline, and are very tow in organic matter, nitrogen, and phosphorus. It is believed that the combination of limited soil moisture in mid-summer and very low nutrient levels are the primary reason for such low plant cover and plant production in these predominantly polar barren landscapes. Geologic substrate with an abundance of frost-shattered rock and topographic position are factors that control the limited availability of water. 相似文献
16.
Indrani Kar 《Journal of biomolecular structure & dynamics》2017,35(14):2997-3011
The influences of substoichiometric amounts of seven plant extracts in the Fenton reaction-mediated damage to deoxynucleosides, deoxynucleoside monophosphates, deoxynucleoside triphosphates, and supercoiled plasmid DNA were studied to rationalize anticancer properties reported in some of these extracts. Extracts from Acacia catechu, Emblica officinalis, Spondias dulcis, Terminalia belerica, Terminalia chebula, as well as gallic acid, epicatechin, chebulagic acid and chebulinic acid enhance the extent of damage in Fenton reactions with all monomeric substrates but protect supercoiled plasmid DNA, compared to standard Fenton reactions. The damage to pyrimidine nucleosides/nucleotides is enhanced by these extracts and compounds to a greater extent than for purine ones in a concentration dependent manner. Dolichos biflorus and Hemidesmus indicus extracts generally do not show this enhancement for the monomeric substrates though they protect plasmid DNA. Compared to standard Fenton reactions for deoxynucleosides with ethanol, the presence of these five plant extracts render ethanol scavenging less effective as the radical is generated in the vicinity of the target. Since substoichiometric amounts of these extracts and the four compounds produce this effect, a catalytic mechanism involving the presence of a ternary complex of the nucleoside/nucleotide substrate, a plant compound and the hydroxyl radical is proposed. Such a mechanism cannot operate for plasmid DNA as the planar rings in the extract compounds cannot stack with the duplex DNA bases. These plant extracts, by enhancing Fenton reaction-mediated damage to deoxynucleoside triphosphates, slow down DNA replication in rapidly dividing cancer cells, thus contributing to their anticancer properties. 相似文献
17.
Responses of plant vascular systems to auxin transport inhibition. 总被引:28,自引:0,他引:28
To assess the role of auxin flows in plant vascular patterning, the development of vascular systems under conditions of inhibited auxin transport was analyzed. In Arabidopsis, nearly identical responses evoked by three auxin transport inhibitor substances revealed an enormous plasticity of the vascular pattern and suggest an involvement of auxin flows in determining the sites of vascular differentiation and in promoting vascular tissue continuity. Organs formed under conditions of reduced auxin transport contained increased numbers of vascular strands and cells within those strands were improperly aligned. In leaves, vascular tissues became progressively confined towards the leaf margin as the concentration of auxin transport inhibitor was increased, suggesting that the leaf vascular system depends on inductive signals from the margin of the leaf. Staged application of auxin transport inhibitor demonstrated that primary, secondary and tertiary veins became unresponsive to further modulations of auxin transport at successive stages of early leaf development. Correlation of these stages to anatomical features in early leaf primordia indicated that the pattern of primary and secondary strands becomes fixed at the onset of lamina expansion. Similar alterations in the leaf vascular responses of alyssum, snapdragon and tobacco plants suggest common functions of auxin flows in vascular patterning in dicots, while two types of vascular pattern alterations in Arabidopsis auxin transport mutants suggest that at least two distinct primary defects can result in impaired auxin flow. We discuss these observations with regard to the relative contributions of auxin transport, auxin sensitivity and the cellular organisation of the developing organ on the vascular pattern. 相似文献
18.
19.
Marlen Bertram Kurt Buxmann Peter Furrer 《The International Journal of Life Cycle Assessment》2009,14(Z1):62-69
Background, aim and scope
Climate change is a subject of growing global concern. Based on International Energy Agency (IEA 2004) research, about 19% of the greenhouse gas emissions from fuel combustion are generated by the transportation sector, and its share is likely to grow. Significant increases in the vehicles fleets are expected in particular in China, India, the Middle East and Latin America. As a result, reducing vehicle fuel consumption is most essential for the future. The reduction of the vehicle weight, the introduction of improved engine technologies, lower air friction, better lubricants, etc. are established methods of improving fuel efficiency, reducing energy consumption and greenhouse gas emissions. Continued progress will be required along all these fronts with light-weighting being one of the most promising options for the global transport sector. This paper quantifies greenhouse gas savings realised from light-weighting cars with aluminium based on life cycle assessment methodology. The study uses a pragmatic approach to assess mass reduction by comparing specific examples of components meeting identical performance criteria. The four examples presented in this analysis come from practical applications of aluminium. For each case study, the vehicle manufacturer has supplied the respective masses of the aluminium and the alternative component. 相似文献20.
The properties of oxaloacetate (OA) transport into mitochondria from potato (Solanum tuberosum) tuber and pea (Pisum sativum) leaves were studied by measuring the uptake of 14C-labeled OA into liposomes with incorporated mitochondrial membrane proteins preloaded with various dicarboxylates or citrate. OA was found to be transported in an obligatory counterexchange with malate, 2-oxoglutarate, succinate, citrate, or aspartate. Phtalonate inhibited all of these countertransports. OA-malate countertransport was inhibited by 4,4′-dithiocyanostilbene-2,2′-disulfonate and pyridoxal phosphate, and also by p-chloromercuribenzene sulfonate and mersalyl, indicating that a lysine and a cysteine residue of the translocator protein are involved in the transport. From these and other inhibition studies, we concluded that plant mitochondria contain an OA translocator that differs from all other known mitochondrial translocators. Major functions of this translocator are the export of reducing equivalents from the mitochondria via the malate-OA shuttle and the export of citrate via the citrate-OA shuttle. In the cytosol, citrate can then be converted either into 2-oxoglutarate for use as a carbon skeleton for nitrate assimilation or into acetyl-coenzyme A for use as a precursor for fatty acid elongation or isoprenoid biosynthesis. 相似文献