首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Rhizobium leguminosarum bv. viciae establishes symbiotic nitrogen fixing partnerships with plant species belonging to the Tribe Vicieae, which includes the genera Vicia, Lathyrus, Pisum and Lens. Motility and chemotaxis are important in the ecology of R. leguminosarum to provide a competitive advantage during the early steps of nodulation, but the mechanisms of motility and flagellar assembly remain poorly studied. This paper addresses the role of the seven flagellin genes in producing a functional flagellum.

Results

R. leguminosarum strains 3841 and VF39SM have seven flagellin genes (flaA, flaB, flaC, flaD, flaE, flaH, and flaG), which are transcribed separately. The predicted flagellins of 3841 are highly similar or identical to the corresponding flagellins in VF39SM. flaA, flaB, flaC, and flaD are in tandem array and are located in the main flagellar gene cluster. flaH and flaG are located outside of the flagellar/motility region while flaE is plasmid-borne. Five flagellin subunits (FlaA, FlaB, FlaC, FlaE, and FlaG) are highly similar to each other, whereas FlaD and FlaH are more distantly related. All flagellins exhibit conserved amino acid residues at the N- and C-terminal ends and are variable in the central regions. Strain 3841 has 1-3 plain subpolar flagella while strain VF39SM exhibits 4-7 plain peritrichous flagella. Three flagellins (FlaA/B/C) and five flagellins (FlaA/B/C/E/G) were detected by mass spectrometry in the flagellar filaments of strains 3841 and VF39SM, respectively. Mutation of flaA resulted in non-motile VF39SM and extremely reduced motility in 3841. Individual mutations of flaB and flaC resulted in shorter flagellar filaments and consequently reduced swimming and swarming motility for both strains. Mutant VF39SM strains carrying individual mutations in flaD, flaE, flaH, and flaG were not significantly affected in motility and filament morphology. The flagellar filament and the motility of 3841 strains with mutations in flaD and flaG were not significantly affected while flaE and flaH mutants exhibited shortened filaments and reduced swimming motility.

Conclusion

The results obtained from this study demonstrate that FlaA, FlaB, and FlaC are major components of the flagellar filament while FlaD and FlaG are minor components for R. leguminosarum strains 3841 and VF39SM. We also observed differences between the two strains, wherein FlaE and FlaH appear to be minor components of the flagellar filaments in VF39SM but these flagellin subunits may play more important roles in 3841. This paper also demonstrates that the flagellins of 3841 and VF39SM are possibly glycosylated.  相似文献   

2.
The flagellotropic phage 7-7-1 specifically adsorbs to Agrobacterium sp. strain H13-3 (formerly Rhizobium lupini H13-3) flagella for efficient host infection. The Agrobacterium sp. H13-3 flagellum is complex and consists of three flagellin proteins: the primary flagellin FlaA, which is essential for motility, and the secondary flagellins FlaB and FlaD, which have minor functions in motility. Using quantitative infectivity assays, we showed that absence of FlaD had no effect on phage infection, while absence of FlaB resulted in a 2.5-fold increase in infectivity. A flaA deletion strain, which produces straight and severely truncated flagella, experienced a significantly reduced infectivity, similar to that of a flaB flaD strain, which produces a low number of straight flagella. A strain lacking all three flagellin genes is phage resistant. In addition to flagellation, flagellar rotation is required for infection. A strain that is nonmotile due to an in-frame deletion in the gene encoding the motor component MotA is resistant to phage infection. We also generated two strains with point mutations in the motA gene resulting in replacement of the conserved charged residue Glu98, which is important for modulation of rotary speed. A change to the neutral Gln caused the flagellar motor to rotate at a constant high speed, allowing a 2.2-fold-enhanced infectivity. A change to the positively charged Lys caused a jiggly motility phenotype with very slow flagellar rotation, which significantly reduced the efficiency of infection. In conclusion, flagellar number and length, as well as speed of flagellar rotation, are important determinants for infection by phage 7-7-1.  相似文献   

3.
Helicobacter mustelae causes chronic gastritis and ulcer disease in ferrets. It is therefore considered an important animal model of human Helicobacter pylori infection. High motility even in a viscous environment is one of the common virulence determinants of Helicobacter species. Their sheathed flagella contain a complex filament that is composed of two distinctly different flagellin subunits, FlaA and FlaB, that are coexpressed in different amounts. Here, we report the cloning and sequence determination of the flaA gene of H. mustelae NCTC12032 from a PCR amplification product. The FlaA protein has a calculated molecular mass of 53 kDa and is 73% homologous to the H. pylori FlaA subunit. Isogenic flaA and flaB mutants of H. mustelae F1 were constructed by means of reverse genetics. A method was established to generate double mutants (flaA flaB) of H. mustelae F1 as well as H. pylori N6. Genotypes, motility properties, and morphologies of the H. mustelae flagellin mutants were determined and compared with those of the H. pylori flaA and flaB mutants described previously. The flagellar organizations of the two Helicobacter species proved to be highly similar. When the flaB genes were disrupted, motility decreased by 30 to 40%. flaA mutants retained weak motility by comparison with strains that were devoid of both flagellin subunits. Weakly positive motility tests of the flaA mutants correlated with the existence of short truncated flagella. In H. mustelae, lateral as well as polar flagella were present in the truncated form. flaA flaB double mutants were completely nonmotile and lacked any form of flagella. These results show that the presence of both flagellin subunits is necessary for complete motility of Helicobacter species. The importance of this flagellar organization for the ability of the bacteria to colonize the gastric mucosa and to persist in the gastric mucus remains to be proven.  相似文献   

4.
5.
6.

Background  

The Yersinia enterocolitica flagellar master regulator FlhD/FlhC affects the expression levels of non-flagellar genes, including 21 genes that are involved in central metabolism. The sigma factor of the flagellar system, FliA, has a negative effect on the expression levels of seven plasmid-encoded virulence genes in addition to its positive effect on the expression levels of eight of the flagellar operons. This study investigates the phenotypes of flhD and fliA mutants that result from the complex gene regulation.  相似文献   

7.
8.
The genome of a halophilic archaeon Haloarcula marismortui carries two flagellin genes, flaA2 and flaB. Previously, we demonstrated that the helical flagellar filaments of H. marismortui were composed primarily of flagellin FlaB molecules, while the other flagellin (FlaA2) was present in minor amounts. Mutant H. marismortui strains with either flagellin gene inactivated were obtained. It was shown that inactivation of the flaA2 gene did not lead to changes in cell motility and helicity of the filaments, while the cells with inactivated flaB lost their motility and flagella synthesis was stopped. Two FlaB flagellin forms having different sensitivities to proteolysis were found in the flagellar filament structure. It is speculated that these flagellin forms may ensure the helical filament formation. Moreover, the flagella of a psychrotrophic haloarchaeon Halorubrum lacusprofundi were isolated and characterized for the first time. H. lacusprofundi filaments were helical and exhibited morphological polymorphism, although the genome contained a single flagellin gene. These results suggest that the mechanisms of flagellar helicity may differ in different halophilic archaea, and sometimes the presence of two flagellin genes, in contrast to Halobacterium salinarum, is not necessary for the formation of a functional helical flagellum.  相似文献   

9.
Helicobacter pylori colonizes the human stomach and can cause gastroduodenal disease. Flagellar motility is regarded as a major factor in the colonizing ability of H. pylori. The functional roles of flagellar structural proteins other than FlaA, FlaB, and FlgE are not well understood. The fliD operon of H. pylori consists of flaG, fliD, and fliS genes, in the order stated, under the control of a sigma(28)-dependent promoter. In an effort to elucidate the function of the FliD protein, a hook-associated protein 2 homologue, in flagellar morphogenesis and motility, the fliD gene (2,058 bp) was cloned and isogenic mutants were constructed by disruption of the fliD gene with a kanamycin resistance cassette and electroporation-mediated allelic-exchange mutagenesis. In the fliD mutant, morphologically abnormal flagellar appendages in which very little filament elongation was apparent were observed. The fliD mutant strain was completely nonmotile, indicating that these abnormal flagella were functionally defective. Furthermore, the isogenic fliD mutant of H. pylori SS1, a mouse-adapted strain, was not able to colonize the gastric mucosae of host mice. These results suggest that H. pylori FliD is an essential element in the assembly of the functional flagella that are required for colonization of the gastric mucosa.  相似文献   

10.
Bacterial flagella play an essential role in the pathogenesis of numerous enteric pathogens. The flagellum is required for motility, colonization, and in some instances, for the secretion of effector proteins. In contrast to the intensively studied flagella of Escherichia coli and Salmonella typhimurium, the flagella of Campylobacter jejuni, Helicobacter pylori and Vibrio cholerae are less well characterized and composed of multiple flagellin subunits. This study was performed to gain a better understanding of flagellin export from the flagellar type III secretion apparatus of C. jejuni. The flagellar filament of C. jejuni is comprised of two flagellins termed FlaA and FlaB. We demonstrate that the amino‐termini of FlaA and FlaB determine the length of the flagellum and motility of C. jejuni. We also demonstrate that protein‐specific residues in the amino‐terminus of FlaA and FlaB dictate export efficiency from the flagellar type III secretion system (T3SS) of Yersinia enterocolitica. These findings demonstrate that key residues within the amino‐termini of two nearly identical proteins influence protein export efficiency, and that the mechanism governing the efficiency of protein export is conserved among two pathogens belonging to distinct bacterial classes. These findings are of additional interest because C. jejuni utilizes the flagellum to export virulence proteins.  相似文献   

11.
Expression of the two Helicobacter pylori flagellin proteins FlaA and FlaB is required for full motility and persistent infection of the gastric mucosa. The mechanisms and regulation of the biosynthesis and export of flagella in H. pylori are still poorly understood. Scrutiny of the H. pylori 26695 genome sequence revealed homologues of FliQ and FlhB. The roles of the fliQ and flhB genes in H. pylori were investigated by the construction and characterisation of defined isogenic mutants. The results indicate that these genes are involved in the flagellar expression, adhesion to and colonisation of the gastric mucosa.  相似文献   

12.
13.
Three out of 10 Helicobacter pylori clinical isolates were found to be naturally competent for genetic transformation to streptomycin resistance by chromosomal DNA extracted from a spontaneous streptomycin-resistant H. pylori mutant. The frequency of transformation varied between 5 × 10?4 and 4 × 10?6, depending on the H. pylori isolate used. Transposon shuttle mutagenesis based on this natural competence was established using the flagellin gene flaA as the target. The cloned flaA gene was interrupted by insertion of TnMax1, a mini-Tn1721 transposon carrying a modified chloramphenicol-acetyltransferase gene, the catGC cassette. Natural transformation of competent H. pylori strains with plasmid constructs harbouring a catGC-inactivated flaA gene resulted in chloramphenicol-resistant transformants at an average frequency of 4 × 10?5. Southern hybridization experiments confirmed the replacement of the chromosomal H. pylori flaA gene by the cat-inactivated cloned gene copy via homologous recombination resulting in allelic exchange. Phenotypic characterization of the mutants demonstrated the absence of flagella under the electron microscope and the loss of bacterial motility. Immunoblots of cell lysates of the H. pylori mutants with an antiserum raised against the C-terminal portion of recombinant H. pylori major flagellin (FlaA) confirmed the absence of the 54kDa FlaA protein. This efficient transposon shuttle mutagenesis procedure for H. pylori based on natural competence opens up new possibilities for the genetic assessment of putative H. pylori virulence determinants.  相似文献   

14.
The motile bacterium Vibrio fischeri is the specific bacterial symbiont of the Hawaiian squid Euprymna scolopes. Because motility is essential for initiating colonization, we have begun to identify stage-specific motility requirements by creating flagellar mutants that have symbiotic defects. V. fischeri has six flagellin genes that are uniquely arranged in two chromosomal loci, flaABCDE and flaF. With the exception of the flaA product, the predicted gene products are more similar to each other than to flagellins of other Vibrio species. Immunoblot analysis indicated that only five of the six predicted proteins were present in purified flagella, suggesting that one protein, FlaF, is unique with respect to either its regulation or its function. We created mutations in two genes, flaA and flaC. Compared to a flaC mutant, which has wild-type flagellation, a strain having a mutation in the flaA gene has fewer flagella per cell and exhibits a 60% decrease in its rate of migration in soft agar. During induction of light organ symbiosis, colonization by the flaA mutant is impaired, and this mutant is severely outcompeted when it is presented to the animal as a mixed inoculum with the wild-type strain. Furthermore, flaA mutant cells are preferentially expelled from the animal, suggesting either that FlaA plays a role in adhesion or that normal motility is an advantage for retention within the host. Taken together, these results show that the flagellum of V. fischeri is a complex structure consisting of multiple flagellin subunits, including FlaA, which is essential both for normal flagellation and for motility, as well as for effective symbiotic colonization.  相似文献   

15.
16.
17.
18.
19.
A method of insertional mutagenesis for naturally transformable organisms has been adapted from Haemophilus influenzae and applied to the study of the pathogenesis of Campylobacter jejuni. A series of kanamycin-resistant Insertional mutants of C. jejuni 81–176 has been generated and screened for loss of ability to invade INT407 cells. Eight noninvasive mutants were identified which showed 18-200-fold reductions in the level of invasion compared with the parent. Three of these eight show defects in motility, and five are fully motile. The three mutants with motility defects were further characterized to evaluate the method. One mutant, K2–32, which is non-adherent and non-invasive, has an insertion of the kanamycin-resistance cassette into the flaA flagellin gene and has greatly reduced motility and a truncated flagellar filament typical of flaA mutants. The adherent non-invasive mutants K2–37 and K2–55 are phenotypically paralysed, i.e. they have a full-length flagellar filament but are non-motile. All three mutants show an aberration in flagellar structure at the point at which the filament attaches to the cell. Mutants K2–37 and K2–55 represent overlapping deletions affecting the same gene, termed pflA (paralysed flagella). This gene encodes a predicted protein of 788 amino acid residues and a molecular weight of 90 977 with no significant homology to known proteins. Site-specific insertional mutants into this open reading frame result in the same paralysed flagellar phenotype and the same invasion defects as the original mutants.  相似文献   

20.

Background

Helicobacter hepaticus colonizes the intestine and liver of mice causing hepatobiliary disorders such as hepatitis and hepatocellular carcinoma, and has also been associated with inflammatory bowel disease in children. In its habitat, H. hepaticus must encounter bile which has potent antibacterial properties. To elucidate virulence and host-specific adaptation mechanisms of H. hepaticus modulated by human or porcine bile, a proteomic study of its response to the two types of bile was performed employing two-dimensional gel electrophoresis (2-DE) and mass spectrometry.

Results

The 2-DE and mass spectrometry analyses of the proteome revealed that 46 proteins of H. hepaticus were differentially expressed in human bile, 18 up-regulated and 28 down-regulated. In the case of porcine bile, 32 proteins were differentially expressed of which 19 were up-regulated, and 13 were down-regulated. Functional classifications revealed that identified proteins participated in various biological functions including stress response, energy metabolism, membrane stability, motility, virulence and colonization. Selected genes were analyzed by RT-PCR to provide internal validation for the proteomic data as well as provide insight into specific expressions of motility, colonization and virulence genes of H. hepaticus in response to human or porcine bile.

Conclusions

Overall, the data suggested that bile is an important factor that determines virulence, host adaptation, localization and colonization of specific niches within host environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号