首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Requirements for U2 snRNP addition to yeast pre-mRNA.   总被引:6,自引:2,他引:6       下载免费PDF全文
The in vitro spliceosome assembly pathway is conserved between yeast and mammals as U1 and U2 snRNPs associate with the pre-mRNA prior to U5 and U4/U6 snRNPs. In yeast, U1 snRNP-pre-mRNA complexes are the first splicing complexes visualized on native gels, and association with U1 snRNP apparently commits pre-mRNA to the spliceosome assembly pathway. The current study addresses U2 snRNP addition to commitment complexes. We show that commitment complex formation is relatively slow and does not require ATP, whereas U2 snRNP adds to the U1 snRNP complexes in a reaction that is relatively fast and requires ATP or hydrolyzable ATP analogs. In vitro spliceosome assembly was assayed in extracts derived from strains containing several U1 sRNA mutations. The results were consistent with a critical role for U1 snRNP in early complex formation. A mutation that disrupts the base-pairing between the 5' end of U1 snRNA and the 5' splice site allows some U2 snRNP addition to bypass the ATP requirement, suggesting that ATP may be used to destabilize certain U1 snRNP:pre-mRNA interactions to allow subsequent U2 snRNP addition.  相似文献   

2.
Previous UV cross-linking studies demonstrated that, upon integration of the U2 snRNP into the spliceosome, a 14 kDa protein (p14) interacts directly with the branch adenosine, the nucleophile for the first transesterification step of splicing. We have identified the cDNA encoding this protein by microsequencing a 14 kDa protein isolated from U2-type spliceosomes. This protein contains an RNA recognition motif and is highly conserved across species. Antibodies raised against this cDNA-encoded protein precipitated the 14 kDa protein cross-linked to the branch adenosine, confirming the identity of the p14 cDNA. A combination of immunoblotting, protein microsequencing and immunoprecipitation revealed that p14 is a component of both 17S U2 and 18S U11/U12 snRNPs, suggesting that it contributes to the interaction of these snRNPs with the branch sites of U2- and U12-type pre-mRNAs, respectively. p14 was also shown to be a subunit of the heteromeric splicing factor SF3b and to interact directly with SF3b155. Immuno precipitations indicated that p14 is present in U12-type spliceosomes, consistent with the idea that branch point selection is similar in the major and minor spliceosomes.  相似文献   

3.
4.
The role of U5 snRNP in pre-mRNA splicing.   总被引:14,自引:2,他引:12       下载免费PDF全文
A J Newman 《The EMBO journal》1997,16(19):5797-5800
The current model for the function of the U5 small nuclear ribonucleoprotein particle (snRNP) in the spliceosome proposes that U5 carries binding sites for the 5' and 3' exons, allowing the spliceosome to 'tether' the 5' exon intermediate produced by the first catalytic step and align it with the 3' exon for the second step. Functional analysis of U5 snRNA in cis-spliceosomes has provided support for this model, and data from nematode and trypanosome splicing systems suggest that U5 or a U5-like snRNA performs a similar role in trans-splicing.  相似文献   

5.
Pseudouridine 35 (psi35) in the branch site recognition region of yeast U2 small nuclear RNA is absolutely conserved in all eukaryotes examined. Pus7p catalyzes pseudouridylation at position 35 in Saccharomyces cerevisiae U2. The pus7 deletion strain, although viable in rich medium, is growth-disadvantaged under certain conditions. To clarify the function of U2 psi35 in yeast, we used this pus7 deletion strain to screen a collection of mutant U2 small nuclear RNAs, each containing a point mutation near the branch site recognition sequence, for a synthetic growth defect phenotype. The screen identified two U2 mutants, one containing a U40 --> G40 substitution (U40G) and another having a U40 deletion (U40Delta). Yeast strains carrying either of these U2 mutations grew as well as the wild-type strain in the selection medium, but they exhibited a temperature-sensitive growth defect phenotype when coupled with the pus7 deletion (pus7Delta). A subsequent temperature shift assay and a conditional pus7 depletion (via GAL promoter shutoff) in the U2-U40 mutant genetic background caused pre-mRNA accumulation, suggesting that psi35 is required for pre-mRNA splicing under certain conditions.  相似文献   

6.
M Aebi  H Hornig  C Weissmann 《Cell》1987,50(2):237-246
We have generated all possible single point mutations of the invariant 5' GT of the large beta-globin intron and determined their effect on splicing in vitro. None of the mutants prevented cleavage in the 5' splice region, but many reduced or abolished exon joining. The mutations GT----TT and GT----CT resulted in a shift of the 5' cleavage site on nucleotide upstream; in the case of the mutation GT----TT, this shift was reverted by a second site mutation within the 5' splice region. Our results suggest that the 5' cleavage site is determined not by the conserved GU sequence but by the 5' splice region as a whole, most probably via base-pairing to the 5' end of the U1 snRNA.  相似文献   

7.
Activation of pre-messenger RNA (pre-mRNA) splicing requires 5′ splice site recognition by U1 small nuclear RNA (snRNA), which is replaced by U5 and U6 snRNA. Here we use crosslinking to investigate snRNA interactions with the 5′ exon adjacent to the 5′ splice site, prior to the first step of splicing. U1 snRNA was found to interact with four different 5′ exon positions using one specific sequence adjacent to U1 snRNA helix 1. This novel interaction of U1 we propose occurs before U1-5′ splice site base pairing. In contrast, U5 snRNA interactions with the 5′ exon of the pre-mRNA progressively shift towards the 5′ end of U5 loop 1 as the crosslinking group is placed further from the 5′ splice site, with only interactions closest to the 5′ splice site persisting to the 5′ exon intermediate and the second step of splicing. A novel yeast U2 snRNA interaction with the 5′ exon was also identified, which is ATP dependent and requires U2-branchpoint interaction. This study provides insight into the nature and timing of snRNA interactions required for 5′ splice site recognition prior to the first step of pre-mRNA splicing.  相似文献   

8.
Recognition of the 5' splice site is an important step in mRNA splicing. To examine whether U1 approaches the 5' splice site as a solitary snRNP or as part of a multi-snRNP complex, we used a simplified in vitro system in which a short RNA containing the 5' splice site sequence served as a substrate in a binding reaction. This system allowed us to study the interactions of the snRNPs with the 5' splice site without the effect of other cis-regulatory elements of precursor mRNA. We found that in HeLa cell nuclear extracts, five spliceosomal snRNPs form a complex that specifically binds the 5' splice site through base pairing with the 5' end of U1. This system can accommodate RNA-RNA rearrangements in which U5 replaces U1 binding to the 5' splice site, a process that occurs naturally during the splicing reaction. The complex in which U1 and the 5' splice site are base paired sediments in the 200S fraction of a glycerol gradient together with all five spliceosomal snRNPs. This fraction is functional in mRNA spliceosome assembly when supplemented with soluble nuclear proteins. The results argue that U1 can bind the 5' splice site in a mammalian preassembled penta-snRNP complex.  相似文献   

9.
Specific recognition of the 5' splice site (5'SS) by the spliceosome components was studied using a simple in vitro system in which a short 5'SS RNA oligonucleotide specifically induces the assembly of snRNP particles into spliceosome-like complexes and actively participates in a trans-splicing reaction. Short-range cross-liking demonstrates that a U5 snRNP protein component, p220 (the human analogue of the yeast Prp8) specifically interacts with the invariant GU dinucleotide at the 5' end of the intron. The GU:p220 interaction can be detected in the functional splicing complex B. Although p220 has been known to contact several nucleotides around the 5' splice junction, the p220:GU dinucleotide interaction described here is remarkably specific. Consistent with the high conservation of the GU, even minor modifications of this element affect recognition of the 5'SS RNA by p220. Substitution of uridine at the GU with base analogues containing a large methyl or iodo group, but not a smaller flouro group at base position 5, interferes with association of 5'SS RNA with snRNP complexes and their functional participation in splicing.  相似文献   

10.
To identify splicing factors in proximity of the 5' splice site (5'SS), we followed a crosslinking profile of site-specifically modified, photoreactive RNA substrates. Upon U4/U5/U6 snRNP addition, the 5'SS RNA crosslinks in an ATP-dependent manner to U6 snRNA, an unidentified protein p27, and the 100-kDa U5 snRNP protein, a human ortholog of an ATPase/RNA helicase yPrp28p. The 5'SS:hPrp28p crosslink maps to the highly conserved TAT motif in proximity of the ATP-binding site in hPrp28p. We propose that hPrp28p acts as a helicase to unwind the 5'SS:U1 snRNA duplex, and at the same time as a 5'SS translocase, which, upon NTP-dependent conformational change, positions the 5'SS for pairing with U6 snRNA within the spliceosome. This repositioning of the 5'SS takes place regardless of whether the 5'SS is originally duplexed with U1 snRNA.  相似文献   

11.
We have introduced a single photochemical crosslinking reagent into specific sites in the central domain of U6 to identify the sites that are in close proximity to the pre-mRNA substrate. Four distinct U6 snRNAs were synthesized with a single 4-thiouridine (4-thioU) at positions 46, 51, 54, and 57, respectively. Synthetic U6 RNA containing the 4-thioU modifications can functionally reconstitute splicing activity in cell-free yeast splicing extracts depleted of endogenous U6 snRNA. Upon photoactivation with UV (>300 nm), 4-thioU at position 46 forms crosslinks to pre-mRNA near the 5' splice site at nt +4, +5, +6, and +7 in the intron, whereas 4-thioU at position 51 crosslinks to the pre-mRNA at positions -2, -1, +1, +2, +3, and at the invariant G in the lariat intermediate. All crosslinks are dependent on the presence of ATP and the splicing substrate. The two crosslinks to the pre-mRNA from position 46 and 51 of U6 can also occur in prp2 heat-inactivated yeast splicing extracts blocked immediately prior to the first chemical step. Significantly, the crosslink from position 51 can undergo subsequent splicing when the mutant extract is complemented with functional Prp2 protein in a chase experiment, indicating that the crosslink reflects a functional interaction that is maintained during the first step. The crosslink to lariat intermediate appears when the mutant spliceosomes are complemented with functional Prp2 protein added exogenously. This experiment is a paradigm for future studies in which different mutant extracts are used to establish the stage in assembly at which particular RNA-RNA interactions defined by unique crosslinks occur.  相似文献   

12.
The first AG dinucleotide downstream from the branchpoint sequence (BPS) is chosen as the 3'' splice site during catalytic step II of the splicing reaction. The mechanism and factors involved in selection of this AG are not known. Early in mammalian spliceosome assembly, U2AF65 binds to the pyrimidine tract between the BPS and AG. Here we show that U2AF65 crosslinking is replaced by crosslinking of three proteins of 110, 116 and 220 kDa prior to catalytic step II, and we provide evidence that all three proteins are components of U5 snRNP. These proteins interact with pre-mRNA in the region spanning from immediately downstream of U2 snRNP''s binding site at the BPS to just beyond the 3'' splice site. We also demonstrate that there are strict constraints on both the sequence and the distance between the BPS and AG for catalytic step II. Together, these observations suggest that U5 snRNP is positioned on the 3'' splice site by an interaction (direct or indirect) with U2 snRNP bound at the BPS and by a direct interaction with the pyrimidine tract. The functional AG for catalytic step II may be specified, in turn, by its location with respect to the U5 snRNP binding site.  相似文献   

13.
14.
Major structural changes occur in the spliceosome during its catalytic activation, which immediately precedes the splicing of pre-mRNA. Whereas changes in snRNA conformation are well documented at the level of secondary RNA-RNA interactions, little is known about the tertiary structure of this RNA-RNA network, which comprises the spliceosome's catalytic core. Here, we have used the hydroxyl-radical probe Fe-BABE, tethered to the tenth nucleotide (U(+10)) of the 5' end of a pre-mRNA intron, to map RNA-RNA proximities in spliceosomes. These studies revealed that several conserved snRNA regions are close to U(+10) in activated spliceosomes, namely (i) the U6 snRNA ACAGAG-box region, (ii) portions of the U6 intramolecular stem-loop (U6-ISL) including a nucleotide implicated in the first catalytic step (U74), and (iii) the region of U2 that interacts with the branch point. These data constrain the relative orientation of these structural elements with respect to U(+10) in the activated spliceosome. Upon conversion of the activated spliceosome to complex C, the accessibility of U6-ISL to hydroxyl-radical cleavage is altered, suggesting rearrangements after the first catalytic step.  相似文献   

15.
We have identified a class of pre-mRNAs that are spliced in HeLa extracts depleted for U1 snRNP (delta U1 extracts). Previously, we described pre-mRNAs that can be spliced in delta U1 extracts only when high concentrations of SR splicing factors are added. In contrast, the substrates characterized here are efficiently processed in delta U1 extracts without the addition of excess SR proteins. The members of this class comprise both a naturally occurring pre-mRNA, from the Drosophila fushi tarazu gene, and a chimera containing sequences from two different pre-mRNAs that individually are dependent upon U1 snRNP or excess SR proteins. Several sequence elements account for the variations in dependence on U1 snRNP and SR proteins for splicing. In one pre-mRNA, a single element was identified adjacent to the branch site. In the other, two elements flanking the 5'' splice site were found to be critical. This U1-independent splicing reaction may provide a mechanism for cells to control the extent of processing of different classes of pre-mRNAs in response to altered activities of SR proteins, and furthermore suggests that U1 snRNP-independent splicing may not be uncommon.  相似文献   

16.
Recognition and pairing of the correct 5' and 3' splice sites (ss) of a pre-mRNA are critical events that occur early during spliceosome assembly. Little is known about the spatial organization in early spliceosomal complexes of the U1 and U2 snRNPs, which together with several non-snRNP proteins, are involved in juxtapositioning the functional sites of the pre-mRNA. To better understand the molecular mechanisms of splice-site recognition/pairing, we have examined the organization of U2 relative to U1 and pre-mRNA in spliceosomal complexes via hydroxyl-radical probing with Fe-BABE-tethered U2 snRNA. These studies reveal that functional sites of the pre-mRNA are located close to the 5' end of U2 both in E and A complexes. U2 is also positioned close to U1 in a defined orientation already in the E complex, and their relative spatial organization remains largely unchanged during the E to A transition.  相似文献   

17.
Interactions of the yeast U6 RNA with the pre-mRNA branch site.   总被引:6,自引:5,他引:1       下载免费PDF全文
The small nuclear RNA (snRNA) components of the spliceosome have been proposed to catalyze the excision of introns from nuclear pre-mRNAs. If this hypothesis is correct, then the snRNA components of the spliceosome may interact directly with the reactive groups of pre-mRNA substrates. To explore this possibility, a genetic screen has been used to identify potential interactions between the U6 RNA and the pre-mRNA branch site. Notably, the selection yielded mutants in two regions of the yeast U6 RNA implicated previously in the catalytic events of splicing. These mutants significantly increase the splicing of pre-mRNA substrates containing non-adenosine branch sites. U6 mutants in U2/U6 helix Ia show strong allele-specific interactions with the branch site nucleotide and interact with PRP16, a factor implicated previously in branch site utilization. The other mutants cluster in the intramolecular helix of U6 and suppress the effects of branch site mutations in a nonallele-specific fashion. The locations of these mutants may define positions important for binding of the U6 intramolecular helix to the catalytic core of the spliceosome.  相似文献   

18.
A series of efficiently spliced pre-mRNA substrates containing single 4-thiouridine residues were used to monitor RNA-protein interactions involving the branch site-3' splice site-3' exon region during yeast pre-mRNA splicing through cross-linking analysis. Prior to the assembly of the prespliceosome, Mud2p and the branch point bridging protein cross-link to a portion of this region in an ATP-independent fashion. Assembly of the prespliceosome leads to extensive cross-linking of the U2-associated protein Hsh155p to this region. Following the first step of splicing and in a manner independent of Prp16p, the U5 small nuclear ribonucleoprotein particle-associated protein Prp8p also associates extensively with the branch site-3' splice site-3' exon region. The subsequent cross-linking of Prp16p to the lariat intermediate is restricted to the 3' splice site and the adjacent 3' exon sequence. Using modified substrates to either mutationally or chemically block the second step, we found that the association of Prp22p with the lariat intermediate represents an authentic transient intermediate and appears to be restricted to the last eight intron nucleotides. Completion of the second step leads to the cross-linking of an unidentified approximately 80-kDa protein near the branch site sequence, suggesting a potential role for this protein in a later step in intron metabolism. Taken together, these data provide a detailed portrayal of the dynamic associations of proteins with the branch site-3' splice site region during spliceosome assembly and catalysis.  相似文献   

19.
Eukaryotic pre-mRNAs are capped at their 5' ends, polyadenylated at their 3' ends, and spliced before being exported from the nucleus to the cytoplasm. Although the three processing reactions can be studied separately in vitro, they are coupled in vivo. We identified subunits of the U2 snRNP in highly purified CPSF and showed that the two complexes physically interact. We therefore tested whether this interaction contributes to the coupling of 3' end processing and splicing. We found that CPSF is necessary for efficient splicing activity in coupled assays and that mutations in the pre-mRNA binding site of the U2 snRNP resulted in impaired splicing and in much reduced cleavage efficiency. Moreover, we showed that efficient cleavage required the presence of the U2 snRNA in coupled assays. We therefore propose that the interaction between CPSF and the U2 snRNP contributes to the coupling of splicing and 3' end formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号