首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Human embryonic stem cells (hESCs) are a promising and powerful source of cells for applications in regenerative medicine, tissue engineering, cell-based therapies, and drug discovery. Many researchers have employed conventional culture techniques using feeder cells to expand hESCs in significant numbers, although feeder-free culture techniques have recently been developed. In regard to stem cell expansion, gap junctional intercellular communication (GJIC) is thought to play an important role in hESC survival and differentiation. Indeed, it has been reported that hESC-hESC communication through connexin 43 (Cx43, one of the major gap junctional proteins) is crucial for the maintenance of hESC stemness during expansion. However, the role of GJIC between hESCs and feeder cells is unclear and has not yet been reported.

Methodology/Principal Findings

This study therefore examined whether a direct Cx43-mediated interaction between hESCs and human adipose-derived stem cells (hASCs) influences the maintenance of hESC stemness. Over 10 passages, hESCs cultured on a layer of Cx43-downregulated hASC feeder cells showed normal morphology, proliferation (colony growth), and stemness, as assessed by alkaline phosphatase (AP), OCT4 (POU5F1-Human gene Nomenclature Database), SOX2, and NANOG expression.

Conclusions/Significance

These results demonstrate that Cx43-mediated GJIC between hESCs and hASC feeder cells is not an important factor for the conservation of hESC stemness and expansion.  相似文献   

3.
4.

Rationale

Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs.

Method and Result

We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30–70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7–8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95–98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5−10×105 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines.

Conclusion

We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy.  相似文献   

5.

Background

Recent studies have identified stem/progenitor cells in human and mouse uterine epithelium, which are postulated to be responsible for tissue regeneration and proliferative disorders of human endometrium. These progenitor cells are thought to be derived from Müllerian duct (MD), the primordial female reproductive tract (FRT).

Methodology/Principal Findings

We have developed a model of human reproductive tract development in which inductive neonatal mouse uterine mesenchyme (nMUM) is recombined with green fluorescent protein (GFP)-tagged human embryonic stem cells (hESCs); GFP-hESC (ENVY). We demonstrate for the first time that hESCs can be differentiated into cells with a human FRT epithelial cell phenotype. hESC derived FRT epithelial cells emerged from cultures containing MIXL1+ mesendodermal precursors, paralleling events occurring during normal organogenesis. Following transplantation, nMUM treated embryoid bodies (EBs) generated epithelial structures with a typical MD phenotype that expressed the MD markers PAX2, HOXA10. Functionally, the hESCs derived FRT epithelium responded to exogenous estrogen by proliferating and secreting uterine-specific glycodelin A (GdA).

Conclusions/Significance

These data show nMUM can induce differentiation of hESC to form the FRT epithelium. This may provide a model to study early developmental events of the human FRT.  相似文献   

6.

Background

Due to the inherent sensitivity of human embryonic stem cells (hESCs) to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS) can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK) inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions.

Methodology/Principal Findings

HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions.

Conclusions/Significance

The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types, identification and isolation of stem cell subpopulations, and generation of single cell clones. Finally, these results demonstrate an additional application of ROCK inhibition to hESC research.  相似文献   

7.

Background

Human pancreatic islet transplantation is a prospective curative treatment for diabetes. However, the lack of donor pancreases greatly limits this approach. One approach to overcome the limited supply of donor pancreases is to generate functional islets from human embryonic stem cells (hESCs), a cell line with unlimited proliferative capacity, through rapid directed differentiation. This study investigated whether pancreatic insulin-producing cells (IPCs) differentiated from hESCs could correct hyperglycemia in severe combined immunodeficient (SCID)/non-obese diabetic (NOD) mice, an animal model of diabetes.

Methods

We generated pancreatic IPCs from two hESC lines, YT1 and YT2, using an optimized four-stage differentiation protocol in a chemically defined culture system. Then, about 5–7×106 differentiated cells were transplanted into the epididymal fat pad of SCID/NOD mice (n = 20). The control group were transplanted with undifferentiated hESCs (n = 6). Graft survival and function were assessed using immunohistochemistry, and measuring serum human C-peptide and blood glucose levels.

Results

The pancreatic IPCs were generated by the four-stage differentiation protocol using hESCs. About 17.1% of differentiated cells expressed insulin, as determined by flow cytometry. These cells secreted insulin/C-peptide following glucose stimulation, similarly to adult human islets. Most of these IPCs co-expressed mature β cell-specific markers, including human C-peptide, GLUT2, PDX1, insulin, and glucagon. After implantation into the epididymal fat pad of SCID/NOD mice, the hESC-derived pancreatic IPCs corrected hyperglycemia for ≥8 weeks. None of the animals transplanted with pancreatic IPCs developed tumors during the time. The mean survival of recipients was increased by implanted IPCs as compared to implanted undifferentiated hESCs (P<0.0001).

Conclusions

The results of this study confirmed that human terminally differentiated pancreatic IPCs derived from hESCs can correct hyperglycemia in SCID/NOD mice for ≥8 weeks.  相似文献   

8.

Background

The large number (30) of permanent human embryonic stem cell (hESC) lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002–2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation.

Methods

We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines.

Results

Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM) was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN) zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line.

Conclusion

Even very poor quality embryos with few cells in the ICM can give origin to hESC lines.  相似文献   

9.

Background

Cell culture media conditioned by human foreskin fibroblasts (HFFs) provide a complex supplement of protein and metabolic factors that support in vitro proliferation of human embryonic stem cells (hESCs). However, the conditioning process is variable with different media batches often exhibiting differing capacities to maintain hESCs in culture. While recent studies have examined the protein complement of conditioned culture media, detailed information regarding the metabolic component of this media is lacking.

Methodology/Principal Findings

Using a 1H-Nuclear Magnetic Resonance (1H-NMR) metabonomics approach, 32 metabolites and small compounds were identified and quantified in media conditioned by passage 11 HFFs (CMp11). A number of metabolites were secreted by HFFs with significantly higher concentration of lactate, alanine, and formate detected in CMp11 compared to non-conditioned media. In contrast, levels of tryptophan, folate and niacinamide were depleted in CMp11 indicating the utilisation of these metabolites by HFFs. Multivariate statistical analysis of the 1H-NMR data revealed marked age-related differences in the metabolic profile of CMp11 collected from HFFs every 24 h over 72 h. Additionally, the metabolic profile of CMp11 was altered following freezing at −20°C for 2 weeks. CM derived from passage 18 HFFs (CMp18) was found to be ineffective at supporting hESCs in an undifferentiated state beyond 5 days culture. Multivariate statistical comparison of CMp11 and CMp18 metabolic profiles enabled rapid and clear discrimination between the two media with CMp18 containing lower concentrations of lactate and alanine as well as higher concentrations of glucose and glutamine.

Conclusions/Significance

1H-NMR-based metabonomics offers a rapid and accurate method of characterising hESC conditioning media and is a valuable tool for monitoring, controlling and optimising hESC culture media preparation.  相似文献   

10.

Background

Human embryonic stem cells (hESC) should enable novel insights into early human development and provide a renewable source of cells for regenerative medicine. However, because the three-dimensional hESC aggregates [embryoid bodies (hEB)] typically employed to reveal hESC developmental potential are heterogeneous and exhibit disorganized differentiation, progress in hESC technology development has been hindered.

Methodology/Principal Findings

Using a centrifugal forced-aggregation strategy in combination with a novel centrifugal-extraction approach as a foundation, we demonstrated that hESC input composition and inductive environment could be manipulated to form large numbers of well-defined aggregates exhibiting multi-lineage differentiation and substantially improved self-organization from single-cell suspensions. These aggregates exhibited coordinated bi-domain structures including contiguous regions of extraembryonic endoderm- and epiblast-like tissue. A silicon wafer-based microfabrication technology was used to generate surfaces that permit the production of hundreds to thousands of hEB per cm2.

Conclusions/Significance

The mechanisms of early human embryogenesis are poorly understood. We report an ultra high throughput (UHTP) approach for generating spatially and temporally synchronised hEB. Aggregates generated in this manner exhibited aspects of peri-implantation tissue-level morphogenesis. These results should advance fundamental studies into early human developmental processes, enable high-throughput screening strategies to identify conditions that specify hESC-derived cells and tissues, and accelerate the pre-clinical evaluation of hESC-derived cells.  相似文献   

11.

Background

Human embryonic stem cells (hESCs) may provide an invaluable resource for regenerative medicine. To move hESCs towards the clinic it is important that cells with therapeutic potential be reproducibly generated under completely defined conditions.

Methodology/Principal Findings

Here we report a four-step scalable process that is readily transferable to a Good Manufacture Practice (GMP) facility for the production of functional dopaminergic neurons from hESCs for potential clinical uses. We show that each of the steps (propagation of ESC→generation of neural stem cells (NSC)→induction of dopaminergic precursors→maturation of dopaminergic neurons) could utilize xeno-free defined media and substrate, and that cells could be stored at intermediate stages in the process without losing their functional ability. Neurons generated by this process expressed midbrain and A9 dopaminergic markers and could be transplanted at an appropriate time point in development to survive after transplant.

Conclusions/Significance

hESCs and NSCs can be maintained in xeno-free defined media for a prolonged period of time while retaining their ability to differentiate into authentic dopaminergic neurons. Our defined medium system provides a path to a scalable GMP-applicable process of generation of dopaminergic neurons from hESCs for therapeutic applications, and a ready source of large numbers of neurons for potential screening applications.  相似文献   

12.
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research mainly because of the complex nature of hESC culture conditions. Here we describe complete SILAC labeling of hESCs with fully preserved pluripotency, self-renewal capabilities, and overall proteome status that was quantitatively analyzed to a depth of 1556 proteins and 527 phosphorylation events. SILAC-labeled hESCs appear to be perfectly suitable for functional studies, and we exploited a SILAC-based proteomics strategy for discovery of hESC-specific surface markers. We determined and quantitatively compared the membrane proteomes of the self-renewing versus differentiating cells of two distinct human embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase ζ (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell populations.Human embryonic stem cells (hESCs)1 are stem cells derived from the blastocyst inner cell mass. They are pluripotent; thus they are able to differentiate into any human cell type. The self-renewal capacity and pluripotency make hESCs an ideal system to study the processes of cell development and differentiation. Moreover hESC research is highly relevant for regenerative medicine, which aims at replacing or restoring tissue damaged by disease or injury through transplantation of functional hESCs (1,2). However, factors responsible for maintaining the undifferentiated and pluripotent nature of hESCs are still largely unknown. Before hESCs can be used for transplantation into the human body, reliable and reproducible protocols for differentiating them into specific cell types are needed. To create such protocols we need to develop a thorough understanding of the mechanisms maintaining the undifferentiated pluripotent nature of hESCs and those guiding their differentiation into specific lineages.A number of factors involved in the maintenance of pluripotency have been described over the last few years (3). It has also been demonstrated that overexpression of some of these factors in somatic cells is sufficient to turn them into pluripotent stem cells very similar to hESCs (48). However, it is apparent that the processes occurring during such transformation are extremely complex. A large number of factors and pathways are involved in maintaining the pluripotent state and regulating self-renewal and differentiation. The process of specific hESC differentiation into distinct cell types is even less understood. Most current attempts to directionally differentiate hESCs are based on sequential application of empirically selected growth factors and consequent selection for markers expressed in the target cell types (9). A more systematic approach is needed to improve our understanding of the pathways that control the conversion of precursors into specific cell types, progressing toward the goal of reproducing these processes in vitro for the generation of functional cells and tissues for transplantation.Comprehensive quantitative analysis of the hESC proteome would mean an important advance in understanding the nature of “stemness,” pluripotency, and differentiation. Several studies targeting various aspects of the hESC proteome have already been reported (for reviews, see Refs. 10 and 11). The task, however, is so enormous that further detailed analysis and novel strategies are necessary and will be of high interest and importance. In this regard, MS-based quantitative proteomics and in particular stable isotope labeling by amino acids in cell culture (SILAC) may greatly facilitate the process of defining the mechanisms of hESC self-renewal and differentiation. With SILAC, the entire proteome of a given cell population is metabolically labeled by heavy, non-radioactive isotopic variants of amino acids, thus making it distinguishable by MS analysis (12). Thereafter two or more distinctly SILAC-labeled cell populations can be mixed and analyzed in one MS experiment that allows accurate quantitation of proteins from the different cellular states (13). This versatile strategy has been demonstrated to be very useful for comprehensive characterization of complex biological phenomena (1421) including in-depth comparison of signaling pathways to identify control points determining cell fate of adult mesenchymal stem cells (22).Here we report a procedure for complete SILAC labeling of human ES cells. We show that these SILAC-encoded hESCs have preserved self-renewing undifferentiated status as well as pluripotent capabilities based on analysis of known markers. In addition, we further compared the overall proteomes and phosphoproteomes of SILAC-labeled hESCs and equivalent cells grown under conventional culture conditions. We next compared the membrane proteomes of undifferentiated and differentiated hESCs in a quantitative manner. Our analysis identified 811 membrane proteins, which to our knowledge is the largest data set of ES cell membrane proteome. This study also revealed 23 membrane proteins with large changes in their expression levels during the differentiation. Six of those cell surface molecules displayed more than 3-fold higher levels in the self-renewing cells, whereas the remaining 17 were identified as more abundant in the differentiated population. These may be useful as specific hESC markers for the corresponding ES cell state and help to shed light on the mechanisms for self-renewal and differentiation.  相似文献   

13.
Chen SF  Chang YC  Nieh S  Liu CL  Yang CY  Lin YS 《PloS one》2012,7(2):e31864

Background

Cancer stem cells (CSCs) play an important role in tumor initiation, progression, and metastasis and are responsible for high therapeutic failure rates. Identification and characterization of CSC are crucial for facilitating the monitoring, therapy, or prevention of cancer. Great efforts have been paid to develop a more effective methodology. Nevertheless, the ideal model for CSC research is still evolving. In this study, we created a nonadhesive culture system to enrich CSCs from human oral squamous cell carcinoma cell lines with sphere formation and to characterize their CSC properties further.

Methods

A nonadhesive culture system was designed to generate spheres from the SAS and OECM-1 cell lines. A subsequent investigation of their CSC properties, including stemness, self-renewal, and chemo- and radioresistance in vitro, as well as tumor initiation capacity in vivo, was also performed.

Results

Spheres were formed cost-effectively and time-efficiently within 5 to 7 days. Moreover, we proved that these spheres expressed putative stem cell markers and exhibited chemoradiotherapeutic resistance, in addition to tumor-initiating and self-renewal capabilities.

Conclusions

Using this nonadhesive culture system, we successfully established a rapid and cost-effective model that exhibits the characteristics of CSCs and can be used in cancer research.  相似文献   

14.
15.

Background

Human embryonic stem cells (hESC) have the capacity to differentiate in vivo and in vitro into cells from all three germ lineages. The aim of the present study was to investigate the effect of specific culture conditions on the differentiation of hESC into lung epithelial cells.

Methods

Undifferentiated hESC, grown on a porous membrane in hESC medium for four days, were switched to a differentiation medium for four days; this was followed by culture in air-liquid interface conditions during another 20 days. Expression of several lung markers was measured by immunohistochemistry and by quantitative real-time RT-PCR at four different time points throughout the differentiation and compared to appropriate controls.

Results

Expression of CC16 and NKX2.1 showed a 1,000- and 10,000- fold increase at day 10 of differentiation. Other lung markers such as SP-C and Aquaporin 5 had the highest expression after twenty days of culture, as well as two markers for ciliated cells, FOXJ1 and β-tubulin IV. The results from qRT-PCR were confirmed by immunohistochemistry on paraffin-embedded samples. Antibodies against CC16, SP-A and SP-C were chosen as specific markers for Clara Cells and alveolar type II cells. The functionality was tested by measuring the secretion of CC16 in the medium using an enzyme immunoassay.

Conclusion

These results suggest that by using our novel culture protocol hESC can be differentiated into the major cell types of lung epithelial tissue.  相似文献   

16.

Background

The growth of stem cells in in vitro conditions requires optimal balance between signals mediating cell survival, proliferation, and self-renewal. For clinical application of stem cells, the use of completely defined conditions and elimination of all animal-derived materials from the establishment, culture, and differentiation processes is desirable.

Methodology/Principal Findings

Here, we report the development of a fully defined xeno-free medium (RegES), capable of supporting the expansion of human embryonic stem cells (hESC), induced pluripotent stem cells (iPSC) and adipose stem cells (ASC). We describe the use of the xeno-free medium in the derivation and long-term (>80 passages) culture of three pluripotent karyotypically normal hESC lines: Regea 06/015, Regea 07/046, and Regea 08/013. Cardiomyocytes and neural cells differentiated from these cells exhibit features characteristic to these cell types. The same formulation of the xeno-free medium is capable of supporting the undifferentiated growth of iPSCs on human feeder cells. The characteristics of the pluripotent hESC and iPSC lines are comparable to lines derived and cultured in standard undefined culture conditions. In the culture of ASCs, the xeno-free medium provided significantly higher proliferation rates than ASCs cultured in medium containing allogeneic human serum (HS), while maintaining the differentiation potential and characteristic surface marker expression profile of ASCs, although significant differences in the surface marker expression of ASCs cultured in HS and RegES media were revealed.

Conclusion/Significance

Our results demonstrate that human ESCs, iPSCs and ASCs can be maintained in the same defined xeno-free medium formulation for a prolonged period of time while maintaining their characteristics, demonstrating the applicability of the simplified xeno-free medium formulation for the production of clinical-grade stem cells. The basic xeno-free formulation described herein has the potential to be further optimized for specific applications relating to establishment, expansion and differentiation of various stem cell types.  相似文献   

17.

Background

As human embryonic stem cell (hESC) lines can be derived via multiple means, it is important to determine particular characteristics of individual lines that may dictate the applications to which they are best suited. The objective of this work was to determine points of equivalence and differences between conventionally-derived hESC and parthenote-derived hESC lines (phESC) in the undifferentiated state and during neural differentiation.

Methodology/Principal Findings

hESC and phESC were exposed to the same expansion conditions and subsequent neural and retinal pigmented epithelium (RPE) differentiation protocols. Growth rates and gross morphology were recorded during expansion. RTPCR for developmentally relevant genes and global DNA methylation profiling were used to compare gene expression and epigenetic characteristics. Parthenote lines proliferated more slowly than conventional hESC lines and yielded lower quantities of less mature differentiated cells in a neural progenitor cell (NPC) differentiation protocol. However, the cell lines performed similarly in a RPE differentiation protocol. The DNA methylation analysis showed similar general profiles, but the two cell types differed in methylation of imprinted genes. There were no major differences in gene expression between the lines before differentiation, but when differentiated into NPCs, the two cell types differed in expression of extracellular matrix (ECM) genes.

Conclusions/Significance

These data show that hESC and phESC are similar in the undifferentiated state, and both cell types are capable of differentiation along neural lineages. The differences between the cell types, in proliferation and extent of differentiation, may be linked, in part, to the observed differences in ECM synthesis and methylation of imprinted genes.  相似文献   

18.

Background

Circulating endothelial microparticles (EMP) reflect the condition of the endothelium and are of increasing interest in cardiovascular and inflammatory diseases. Recently, increased numbers of EMP following oral fat intake, possibly due to acute endothelial injury, have been reported. On the other hand, the direct interference of lipids with the detection of EMP has been suggested. This study aimed to investigate the effect of lipid-rich solutions, commonly administered in clinical practice, on the detection, both in vitro and in vivo, of EMP.

Methods

For the in vitro assessment, several lipid-rich solutions were added to whole blood of healthy subjects (n = 8) and patients with coronary heart disease (n = 5). EMP (CD31+/CD42b−) were detected in platelet poor plasma by flow cytometry. For the in vivo study, healthy volunteers were evaluated on 3 different study-days: baseline evaluation, following lipid infusion and after a NaCl infusion. EMP quantification, lipid measurements and peripheral arterial tonometry were performed on each day.

Results

Both in vitro addition and in vivo administration of lipids significantly decreased EMP (from 198.6 to 53.0 and from 272.6 to 90.6/µl PPP, respectively, p = 0.001 and p = 0.012). The EMP number correlated inversely with the concentration of triglycerides, both in vitro and in vivo (r = −0.707 and −0.589, p<0.001 and p = 0.021, respectively). The validity of EMP as a marker of endothelial function is supported by their inverse relationship with the reactive hyperemia index (r = −0.758, p = 0.011). This inverse relation was confounded by the intravenous administration of lipids.

Conclusion

The confounding effect of high circulating levels of lipids, commonly found in patients that receive intravenous lipid-based solutions, should be taken into account when flow cytometry is used to quantify EMP.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号