首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In response to a diverse array of signals, IkappaBalpha is targeted for phosphorylation-dependent degradation by the proteasome, thereby activating NF-kappaB. Here we demonstrate a role of the cleavage product of IkappaBalpha in various death signals. During apoptosis of NIH3T3, Jurkat, Rat-1, and L929 cells exposed to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), Fas, serum deprivation, or TNF-alpha, respectively, IkappaBalpha was cleaved in a caspase-dependent manner. In vitro and in vivo cleavage assays and site-directed mutagenesis showed that caspase-3 cleaved IkappaBalpha between Asp31 and Ser32. Expression of the cleavage product lacking amino-terminus (1-31), DeltaIkappaBalpha, sensitized otherwise resistant NIH3T3 fibroblast cells to apoptosis induced by TNF-alpha or TRAIL, and HeLa tumor cells to TNF-alpha. DeltaIkappaBalpha was more pro-apoptotic compared to wild type or cleavage-resistant (D31E)IkappaBalpha mutant and the sensitization elicited by DeltaIkappaBalpha was as effective as that by the dominant negative mutant, (S32,36A)IkappaBalpha, in NIH3T3 cells. DeltaIkappaBalpha suppressed the transactivation of NF-kappaB induced by TNF-alpha or TRAIL, as reflected by luciferase-reporter activity. Conversely, expression of the p65 subunit of NF-kappaB suppressed TNF-alpha-, TRAIL-, and serum deprivation-induced cell death. On the contrary, DeltaIkappaBalpha was less effective at increasing the death rate of HeLa cells that were already sensitive to death signals including TRAIL, etoposide, or taxol. These results suggest that DeltaIkappaBalpha generated by various death signals sensitizes cells to apoptosis by suppressing NF-kappaB activity.  相似文献   

4.
Oncogenes induce and activate endogenous p73 protein   总被引:5,自引:0,他引:5  
  相似文献   

5.
6.
7.
8.
Bcl-2 can suppress apoptosis by controlling genes that encode proteins required for programmed cell death and by interference with peroxidative damage. Overexpression of Bcl-2 in NIH3T3 cells can prevent GSNO-induced (S-nitrosoglutathione-induced) apoptosis. The experimental results indicated that activation of NF-kappaB by GSNO is involved in inducing apoptosis. Surprisingly, we found that Bcl-2 delayed the release of IkB by formation of a Bcl-2-NF-kappaB complex (p50-p65-IkappaB) in the cytoplasm during cell apoptosis. Furthermore, a novel Bcl-2-p50 complex was found in the nucleus. These features were only observed in Bcl-2-transfected cells but not in the parental NIH3T3 cells. Overexpression of Bcl-2 suppressed the levels of c-myc, a target gene of NF-kappaB, and influenced the DNA-binding activity of NF-kappaB during GSNOinduced apoptosis. We suggest that the Bcl-2-p50 complex inhibits NF-kappaB DNA-binding activity by competing with the p65-p50 heterodimer for the DNA-binding site in the nucleus. Finally, it has been demonstrated that the anti-apoptotic potential of Bcl-2 may be attributed to its complexing with p50 in the nucleus that leads to blockage of nuclear gene expression.  相似文献   

9.
The present study evaluated whether nuclear factor-kappaB (NF-kappaB) activation contributes to the apoptotic-like death of striatal neurons induced by kainic acid (KA) receptor stimulation. Intrastriatally infused KA (1.25-5.0 nmol) produced substantial neuronal loss as indicated by an 8-73% decrease in 67-kDa glutamic acid decarboxylase (p<0.05). KA (1.25-5.0 nmol) elicited internucleosomal DNA fragmentation that was inhibited by the AMPA/KA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dibenzo[f]quinoxaline-7-sulfonamide) but not by the NMDA receptor antagonist MK-801. A decrease in IkappaB-alpha protein levels, which was accompanied by an increase in NF-kappaB binding activity, was found from 6 to 72 h after KA (2.5 nmol) infusion. NF-kappaB was composed mainly of p65 and c-Rel as revealed by supershift assay. In addition, c-Myc and p53 increased from five- to sevenfold from 24 to 72 h after KA (2.5 nmol) administration. Immunohistochemistry revealed high levels of c-Myc and p53 immunoreactivity, mainly in medium-sized striatal neurons. Pretreatment with the cell-permeable recombinant peptide NF-kappaB SN50 (5-20 microg) blocked NF-kappaB nuclear translocation, but had no effect on AP-1 binding. NF-kappaB SN50 also inhibited the KA-induced up-regulation of c-Myc and p53, as well as internucleosomal DNA fragmentation. The apoptotic-like destruction of rat striatal neurons induced by KA receptor stimulation thus appears to involve biochemical mechanisms similar to those mediating the excitotoxic response to NMDA receptor stimulation. The present results provide additional support for the view that NF-kappaB activation contributes to c-Myc and p53 induction and subsequent apoptosis in an excitotoxic model of Huntington's disease.  相似文献   

10.
Nuclear factor kappaB (NF-kappaB) plays a key role in suppression of tumor necrosis factor (TNF)-mediated apoptosis by inducing a variety of anti-apoptotic genes. Expression of c-Myc has been shown to sensitize cells to TNF-mediated apoptosis by inhibiting NF-kappaB activation. However, the precise step in the NF-kappaB signaling pathway and apoptosis modified by c-Myc has not been identified. Using the inducible c-MycER system and c-Myc null fibroblasts, we found that expression of c-Myc inhibited NF-kappaB activation by interfering with RelA/p65 transactivation but not nuclear translocation of NF-kappaB. Activation of c-Myc promoted TNF-induced release of cytochrome c from mitochondria to the cytosol because of the inhibition of NF-kappaB. Furthermore, we found that NF-kappaB-inducible gene A1 was attenuated by expression of c-Myc and that the restoration of A1 expression suppressed c-Myc-induced TNF sensitization. Our results elucidate the molecular mechanisms by which c-Myc increases cell susceptibility to TNF-mediated apoptosis, indicating that c-Myc may exhibit its pro-apoptotic activities by repression of cell survival genes.  相似文献   

11.
Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase   总被引:37,自引:0,他引:37  
Park HS  Lee JS  Huh SH  Seo JS  Choi EJ 《The EMBO journal》2001,20(3):446-456
Hsp72, a major inducible member of the heat shock protein family, can protect cells against many cellular stresses including heat shock. In our present study, we observed that pretreatment of NIH 3T3 cells with mild heat shock (43 degrees C for 20 min) suppressed UV-stimulated c-Jun N-terminal kinase 1 (JNK1) activity. Constitutively overexpressed Hsp72 also inhibited JNK1 activation in NIH 3T3 cells, whereas it did not affect either SEK1 or MEKK1 activity. Both in vitro binding and kinase studies indicated that Hsp72 bound to JNK1 and that the peptide binding domain of Hsp72 was important to the binding and inhibition of JNK1. In vivo binding between endogenous Hsp72 and JNK1 in NIH 3T3 cells was confirmed by co-immunoprecipitation. Hsp72 also inhibited JNK-dependent apoptosis. Hsp72 antisense oligonucleotides blocked Hsp72 production in NIH 3T3 cells in response to mild heat shock and concomitantly abolished the suppressive effect of mild heat shock on UV-induced JNK activation and apoptosis. Collectively, our data suggest strongly that Hsp72 can modulate stress-activated signaling by directly inhibiting JNK.  相似文献   

12.
13.
The acquired mutation (V617F) of Janus kinase 2 (JAK2) is observed in the majority of patients with myeloproliferative neoplasms (MPNs). In the screening of genes whose expression was induced by JAK2 (V617F), we found the significant induction of c-Myc mRNA expression mediated by STAT5 activation. Interestingly, GSK-3β was inactivated in transformed Ba/F3 cells by JAK2 (V617F), and this enhanced the protein expression of c-Myc. The enforced expression of c-Myc accelerated cell proliferation but failed to inhibit apoptotic cell death caused by growth factor deprivation; however, the inhibition of GSK-3β completely inhibited the apoptosis of cells expressing c-Myc. Strikingly, c-Myc T58A mutant exhibited higher proliferative activity in a growth-factor-independent manner; however, this mutant failed to induce apoptosis. In addition, knockdown of c-Myc significantly inhibited the proliferation of transformed cells by JAK2 (V617F), suggesting that c-Myc plays an important role in oncogenic activity of JAK2 (V617F). Furthermore, JAK2 (V617F) induced the expression of a target gene of c-Myc, ornithine decarboxylase (ODC), known as the rate-limiting enzyme in polyamine biosynthesis. An ODC inhibitor, difluoromethylornithine (DFMO), prevented the proliferation of transformed cells by JAK2 (V617F). Importantly, administration of DFMO effectively delayed tumor formation in nude mice inoculated with transformed cells by JAK2 (V617F), resulting in prolonged survival; therefore, ODC expression through c-Myc is a critical step for JAK2 (V617F)-induced transformation and DFMO could be used as effective therapy for MPNs.  相似文献   

14.
Gromiha MM  Selvaraj S 《FEBS letters》2002,518(1-3):129-134
In this study, the role of V12-Rac1 in the cisplatin-induced apoptosis was investigated. Cisplatin-induced apoptosis is associated with cytochrome c release, which can be inhibited by V12-Rac1 expression. The analysis of mitogen-activated protein kinase activity indicated that V12-Rac1 expression led to a decrease in p38 activity after exposure to cisplatin but not c-jun N-terminal kinase and extracellular signal-regulated kinase. Using pharmacological inhibitors, it was found that only p38 is a critical mediator in the cisplatin-induced apoptosis of NIH3T3 cells. This suggests that V12-Rac1 can stimulate the anti-apoptotic signaling pathway in response to cisplatin, and that decreased p38 activity caused by V12-Rac1 expression in cisplatin-treated NIH3T3 cells is crucial for V12-Rac1-dependent cell survival.  相似文献   

15.
16.
17.
18.
19.
The clinical efficacy of many chemotherapeutic agents has been reduced due to the development of drug resistance. In this article, we aimed to validate gossypol, a natural BH3 mimetic found in cottonseeds, as a potential therapeutic to overcome multidrug resistance (MDR). Gossypol was found to retain its efficacy in v‐Ha‐ras‐transformed NIH 3T3 cells that overexpressed P‐glycoprotein (Ras‐NIH 3T3/Mdr), which was similar to the efficacy observed in their parental counterparts (Ras‐NIH 3T3). A rhodamine assay revealed that the alteration of MDR activity did not contribute to the cytotoxic effect of gossypol. Gossypol caused a G2/M arrest by the induction of p21Cip1 and the down‐regulation of p27Kip1 expression in Ras‐NIH 3T3 cells, whereas no significant G2/M arrest was exhibited in Ras‐NIH 3T3/Mdr cells. Surprisingly, a 48‐h treatment with gossypol induced apoptotic cell death in Ras‐NIH 3T3 cells; however, gossypol induced both apoptosis and necrosis in Ras‐NIH 3T3/Mdr cells, as determined with flow cytometry analysis. More notably, gossypol preferentially induced autophagy in Ras‐NIH 3T3 cells but not in Ras‐NIH 3T3/Mdr cells. Coimmunoprecipitation and flow cytometric analysis revealed that gossypol‐induced autophagy is independent of the dissociation of Beclin 1 from Bcl‐2 in Ras‐NIH 3T3 cells. Taken together, these results suggest that the antiproliferative activity of gossypol appears to be due to cell‐cycle arrest at the G2/M phase, with the induction of apoptosis in Ras‐NIH 3T3 cells. In addition, defective autophagy might contribute to apoptotic and necrotic cell death in response to gossypol in Ras‐NIH 3T3/Mdr cells. J. Cell. Physiol. 228: 1496–1505, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Chen S  Yin X  Zhu X  Yan J  Ji S  Chen C  Cai M  Zhang S  Zong H  Hu Y  Yuan Z  Shen Z  Gu J 《The Journal of biological chemistry》2003,278(22):20029-20036
The PITSLRE protein kinases are parts of the large family of p34cdc2-related kinases. During apoptosis induced by some stimuli, specific PITSLRE isoforms are cleaved by caspase to produce a protein that contains the C-terminal kinase domain of the PITSLRE proteins (p110C). The p110C induces apoptosis when it is ectopically expressed in Chinese hamster ovary cells. In our study, similar induction of this p110C was observed during anoikis in NIH3T3 cells. To investigate the molecular mechanism of apoptosis mediated by p110C, we used the yeast two-hybrid system to screen a human fetal liver cDNA library and identified p21-activated kinase 1 (PAK1) as an interacting partner of p110C. The association of p110C with PAK1 was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscope analysis. The interaction of p110C with PAK1 occurred within the residues 210-332 of PAK1. Neither association between p58PITSLRE or p110PITSLRE and PAK1 nor association between p110C and PAK2 or PAK3 was observed. Anoikis was increased and PAK1 activity was inhibited when NIH3T3 cells were transfected with p110C. Furthermore, the binding of p110C with PAK1 and inhibition of PAK1 activity were also observed during anoikis. Taken together, these data suggested that PAK1 might participate in the apoptotic pathway mediated by p110C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号