首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haploid cells of opposite mating type of Saccharomyces cerevisiae conjugate to form zygote. During the conjugation process, the degradation or reorganization of the cell wall and the fusion of the two plasma membranes take place. Since chloroquine inhibits cellular events associated with the reorganization of the plasma membrane, the effect of the drug on conjugation was studied. Chloroquine at a concentration, at which cell growth was not retarded, inhibited zygote formation, while it did not affect other mating functions, such as sexual agglutination, production of and response to mating pheromone. Cells in a mating culture containing chloroquine formed no "prezygote" suggesting that they were not prepared for entering into fusion process. The inhibitory effect of chloroquine was reversible as cells formed zygote when they were washed after treatment with chloroquine. Zygote formation was unaffected in cells possessing chloroquine within vacuoles after incubation with the drug in complete medium (YPD) at pH 7.5, followed by washing. This suggests that chloroquine inhibits zygote formation by adsorbing to the plasma membrane of S. cerevisiae.  相似文献   

2.
The Closterium peracerosum–strigosum–littorale complex is a best characterized zygnematophycean green alga with respect to the process of sexual reproduction. Intercellular communication mediated by two sex pheromones has been well documented in this organism, but information concerning direct cell–cell recognition and fusion of cells involved in conjugation processes has not yet been clarified. In this study, we examined the properties of cell surface carbohydrates in vegetative and reproductive cells using a variety of fluorescein isothiocyanate labeled lectins as probes. Among 20 lectins tested, 10 bound to the Closterium cell surface, and eight of these were specific for the cells involved in sexual reproduction. In addition, some of the lectins inhibited the progress of zygote formation. In particular, Lycopersicon esculentum lectin (LEL) and ConcanavalinA (ConA) considerably inhibited zygote formation (23.6% and 0% of zygotes formed, respectively, compared with the control). LEL mainly accumulated on conjugation papillae and on the surface and lumens of empty cell walls remaining after zygote formation. ConA bound to both vegetative and sexually reproductive cells and strongly accumulated on the conjugation papillae of the latter, indicating ConA binding material(s) are non‐specifically present in Closterium cells but some of the material(s) would be essential for zygote formation. These results suggest that different carbohydrates specifically recognized by these lectins are involved in cell recognition and/or fusion during conjugation processes in the C. psl. complex.  相似文献   

3.
《The Journal of cell biology》1990,111(6):2573-2586
BIK1 function is required for nuclear fusion, chromosome disjunction, and nuclear segregation during mitosis. The BIK1 protein colocalizes with tubulin to the spindle pole body and mitotic spindle. Synthetic lethality observed in double mutant strains containing a mutation in the BIK1 gene and in the gene for alpha- or beta-tubulin is consistent with a physical interaction between BIK1 and tubulin. Furthermore, over- or underexpression of BIK1 causes aberrant microtubule assembly and function, bik1 null mutants are viable but contain very short or undetectable cytoplasmic microtubules. Spindle formation often occurs strictly within the mother cell, probably accounting for the many multinucleate and anucleate bik1 cells. Elevated levels of chromosome loss in bik1 cells are indicative of defective spindle function. Nuclear fusion is blocked in bik1 x bik1 zygotes, which have truncated cytoplasmic microtubules. Cells overexpressing BIK1 initially have abnormally short or nonexistent spindle microtubules and long cytoplasmic microtubules. Subsequently, cells lose all microtubule structures, coincident with the arrest of division. Based on these results, we propose that BIK1 is required stoichiometrically for the formation or stabilization of microtubules during mitosis and for spindle pole body fusion during conjugation.  相似文献   

4.
The MPS1 gene from Saccharomyces cerevisiae encodes an essential protein kinase required for spindle pole body (SPB) duplication and for the mitotic spindle assembly checkpoint. Cells with the mps1-1 mutation fail early in SPB duplication and proceed through monopolar mitosis with lethal consequences. We identified CDC37 as a multicopy suppressor of mps1-1 temperature-sensitive growth. Suppression is allele specific, and synthetic lethal interactions occur between mps1 and cdc37 alleles. We examined the cdc37-1 phenotype for defects related to the SPB cycle. The cdc37-1 temperature-sensitive allele causes unbudded, G1 arrest at Start (Reed, S.I. 1980. Genetics. 95: 561–577). Reciprocal shifts demonstrate that cdc37-1 arrest is interdependent with α-factor arrest but is not a normal Start arrest. Although the cells are responsive to α-factor at the arrest, SPB duplication is uncoupled from other aspects of G1 progression and proceeds past the satellite-bearing SPB stage normally seen at Start. Electron microscopy reveals side-by-side SPBs at cdc37-1 arrest. The outer plaque of one SPB is missing or reduced, while the other is normal. Using the mps2-1 mutation to distinguish between the SPBs, we find that the outer plaque defect is specific to the new SPB. This phenotype may arise in part from reduced Mps1p function: although Mps1p protein levels are unaffected by the cdc37-1 mutation, kinase activity is markedly reduced. These data demonstrate a requirement for CDC37 in SPB duplication and suggest a role for this gene in G1 control. CDC37 may provide a chaperone function that promotes the activity of protein kinases.  相似文献   

5.
Heterotrimeric G protein alpha subunits, RGS proteins, and GoLoco motif proteins have been recently implicated in the control of mitotic spindle dynamics in C. elegans and D. melanogaster. Here we show that "regulator of G protein signaling-14" (RGS14) is expressed by the mouse embryonic genome immediately prior to the first mitosis, where it colocalizes with the anastral mitotic apparatus of the mouse zygote. Loss of Rgs14 expression in the mouse zygote results in cytofragmentation and failure to progress to the 2-cell stage. RGS14 is found in all tissues and segregates to the nucleus in interphase and to the mitotic spindle and centrioles during mitosis. Alteration of RGS14 levels in exponentially proliferating cells leads to cell growth arrest. Our results indicate that RGS14 is one of the earliest essential product of the mammalian embryonic genome yet described and has a general role in mitosis.  相似文献   

6.
During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.  相似文献   

7.
Cell biology of mating in Candida albicans   总被引:3,自引:0,他引:3  
  相似文献   

8.
Distinct Morphological Phenotypes of Cell Fusion Mutants   总被引:15,自引:6,他引:9       下载免费PDF全文
Cell fusion in yeast is the process by which two haploid cells fuse to form a diploid zygote. To dissect the pathway of cell fusion, we phenotypically and genetically characterized four cell fusion mutants, fus6/spa2, fus7/rvs161, fus1, and fus2. First, we examined the complete array of single and double mutants. In all cases but one, double mutants exhibited stronger cell fusion defects than single mutants. The exception was rvs161Δ fus2Δ, suggesting that Rvs161p and Fus2p act in concert. Dosage suppression analysis showed that Fus1p and Fus2p act downstream or parallel to Rvs161p and Spa2p. Second, electron microscopic analysis was used to define the mutant defects in cell fusion. In wild-type prezygotes vesicles were aligned and clustered across the cell fusion zone. The vesicles were associated with regions of cell wall thinning. Analysis of Fus zygotes indicated that Fus1p was required for the normal localization of the vesicles to the zone of cell fusion, and Spa2p facilitated their clustering. In contrast, Fus2p and Rvs161p appeared to act after vesicle positioning. These findings lead us to propose that cell fusion is mediated in part by the localized release of vesicles containing components essential for cell fusion.  相似文献   

9.
M D Rose  G R Fink 《Cell》1987,48(6):1047-1060
Molecular analysis of the KAR1 gene of yeast has shown that it is required for both mitosis and conjugation. The gene was originally identified by mutations that prevent nuclear fusion. By in vitro mutagenesis and gene replacement we have demonstrated that the gene is an essential cell division cycle gene. Temperature-sensitive mutant strains show defects in spindle pole body duplication and chromosome disjunction. Overproduction of the gene product blocks spindle pole body duplication, producing a cell cycle arrest phenotype similar to that of the Kar- temperature-sensitive mutations. Long, aberrant extranuclear microtubules are formed in the temperature-sensitive mutants arrested at the nonpermissive temperature as well as in kar1-1 during conjugation. These observations suggest that the KAR1 gene is required for the normal function of both the intranuclear and extranuclear microtubules.  相似文献   

10.
The pheromone signal pathway inSaccharomyces cerevisiae   总被引:1,自引:0,他引:1  
  相似文献   

11.
In the yeast Saccharomyces cerevisiae, sexual conjugation between haploid cells of opposite mating type results in the formation of a diploid zygote. When treated with fluorescently labeled concanavalin A, a zygote stains nonuniformly, with the greatest fluorescence occurring at the conjugation bridge between the two haploid parents. In the mating mixture, unconjugated haploid cells often elongate to pear-shaped forms ("shmoos") which likewise exhibit asymmetric staining with the most intense fluorescence at the growing end. Shmoo formation can be induced in cells of one mating type by the addition of a hormone secreted by cells of the opposite mating type; such shmoos also stain asymmetrically. In nearly all cases, the nonmating mutants that were examined stained uniformly after incubation with the appropriate hormone. Asymmetric staining is not observed with vegetative cells, even those that are budded. These results suggest that, before and during conjugation, localized cell surface changes occur in cells of both mating types; the surface alterations facilitate fusion and are apparently mediated by the hormones in a manner that is mating-type specific.  相似文献   

12.
Our study of cytological phenotype of meiotic mutation pam resulted in detecting a failure of cytokinesis in mutant pollen mother cells in the form of a block of fusion of membrane vesicles of the cell plate, and an impossibility of formation of daughter cell membranes. The mutation does not disturb the division spindle structure and function. Asynchrony of meiosis in pam is the result of arrest of pollen mother cells at metaphase 1 and metaphase 2.  相似文献   

13.
During meiosis II in the yeast Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body changes from a site of microtubule initiation to a site of de novo membrane formation. These membranes are required to package the haploid meiotic products into spores. This functional change in the spindle pole body involves the expansion and modification of its cytoplasmic face, termed the outer plaque. We report here that SPO21 is required for this modification. The Spo21 protein localizes to the spindle pole in meiotic cells. In the absence of SPO21 the structure of the outer plaque is abnormal, and prospore membranes do not form. Further, decreased dosage of SPO21 leaves only two of the four spindle pole bodies competent to generate membranes. Mutation of CNM67, encoding a known component of the mitotic outer plaque, also results in a meiotic outer plaque defect but does not block membrane formation, suggesting that Spo21p may play a direct role in initiating membrane formation.  相似文献   

14.
The progression of the cell cycle is continuous in most cells, but gametes (sperm and egg cells) exhibit an arrest of the cell cycle to await fertilization to form a zygote, which then continues through the subsequent phases to complete cell division. The phase in which gametes of flowering plants arrest has been a matter of debate, since different phases have been reported for the gametes of different species. In this study, we reassessed the phase of cell-cycle arrest in the gametes of two species, Arabidopsis (Arabidopsis thaliana) and Torenia fournieri. We first showed that 4’, 6-diamidino-2-phenylindole staining was not feasible to detect changes in gametic nuclear DNA in T. fournieri. Next, using 5-ethynyl-2’-deoxyuridine (EdU) staining that detects DNA replication by labeling the EdU absorbed by deoxyribonucleic acid, we found that the replication of nuclear DNA did not occur during gamete development but during zygote development, revealing that the gametes of these species have a haploid nuclear DNA content before fertilization. We thus propose that gametes in the G1 phase participate in the fertilization event in Arabidopsis and T. fournieri.

The replication of nuclear DNA does not occur during gamete development but during zygote development.  相似文献   

15.
We have studied the response of human transformed cells to mitotic spindle inhibition. Two paired cell lines, K562 and its parvovirus-resistant KS derivative clone, respectively nonexpressing and expressing p53, were continuously exposed to nocodazole. Apoptotic cells were observed in both lines, indicating that mitotic spindle impairment induced p53-independent apoptosis. After a transient mitotic delay, both cell lines exited mitosis, as revealed by flow-cytometric determination of MPM2 antigen and cyclin B1 expression, coupled to cytogenetic analysis of sister centromere separation. Both cell lines exited mitosis without chromatid segregation. K562 p53-deficient cells further resumed DNA synthesis, giving rise to cells with a DNA content above 4C, and reentered a polyploid cycle. In contrast, KS cells underwent a subsequent G1 arrest in the tetraploid state. Thus, G1 arrest in tetraploid cells requires p53 function in the rereplication checkpoint which prevents the G1/S transition following aberrant mitosis; in contrast, p53 expression is dispensable for triggering the apoptotic response in the absence of mitotic spindle.  相似文献   

16.
The single axis (oral-aboral) and two planes of symmetry of the ctenophore Beroe ovata become established with respect to the position of zygote nucleus formation and the orientation of first cleavage. Bisection of Beroe eggs at different times revealed that differences in egg organisation are established in relation to the presumptive oral-aboral axis before first cleavage. Lateral fragments produced after but not before the time of first mitosis developed into larvae lacking comb-plates on one side. Time-lapse video demonstrated that waves of cytoplasmic reorganisation spread through the layer of peripheral cytoplasm (ectoplasm) of the egg during the 80 minute period between pronuclear fusion and first cleavage, along the future oral-aboral axis. These waves are manifest as the progressive displacement and dispersal of plaques of accumulated organelles around supernumerary sperm nuclei, and a series of surface movements. Their timing and direction of propagation suggest they may be involved in establishing cytoplasmic differences with respect to the embryonic axis.Inhibitor experiments suggested that the observed cytoplasmic reorganisation involves microtubules. Nocodazole and taxol, which prevent microtubule turnover,blocked plaque dispersal and reduced surface movements.The microfilament-disrupting drug cytochalasin B did not prevent plaque dispersal but induced abnormal surface contractions. We examined changes in microtubule organisation using immunofluorescence on eggs fixed at different times and in live eggs following injection of rhodamine-tubulin. Giant microtubule asters become associated with each male pronucleus after the end of meiosis. Following pronuclear fusion they disappear successively, those nearest the zygote nucleus shrinking first, to establish gradients of aster size within single eggs. Regional differences in microtubule behaviour around the time of mitosis were revealed by brief taxol treatment, which induced the formation of small microtubule asters in the region of the nucleus or spindle during both first and second cell cycles. The observed wave of change may thus reflect the local appearance and spreading of mitotic activity as the zygote nucleus approaches mitosis.  相似文献   

17.
18.
Fertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In angiosperms, polyploidization is a common phenomenon, and polyploidy would have played a major role in the long-term diversification and evolutionary success of plants. As for the mechanism of formation of autotetraploid plants, the triploid-bridge pathway, crossing between triploid and diploid plants, is considered as a major pathway. For the emergence of triploid plants, fusion of an unreduced gamete with a reduced gamete is generally accepted. In addition, the possibility of polyspermy has been proposed for maize, wheat and some orchids, although it has been regarded as an uncommon mechanism of triploid formation. One of the reasons why polyspermy is regarded as uncommon is because it is difficult to reproduce the polyspermy situation in zygotes and to analyze the developmental profiles of polyspermic triploid zygotes. Recently, polyspermic rice zygotes were successfully produced by electric fusion of an egg cell with two sperm cells, and their developmental profiles were monitored. Two sperm nuclei and an egg nucleus fused into a zygotic nucleus in the polyspermic zygote, and the triploid zygote divided into a two-celled embryo via mitotic division with a typical bipolar microtubule spindle. The two-celled proembryos further developed and regenerated into triploid plants. These suggest that polyspermic plant zygotes have the potential to form triploid embryos, and that polyspermy in angiosperms might be a pathway for the formation of triploid plants.  相似文献   

19.
EW Abrams  H Zhang  FL Marlow  L Kapp  S Lu  MC Mullins 《Cell》2012,150(3):521-532
To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres.  相似文献   

20.
Early events, such as formation of the cell wall, first nuclear division and first unequal division of the zygote, were examined following in vitro fusion of single egg and sperm protoplasts of maize ( Zea mays L.). The time course of these events was determined. The formation of cell wall components was observed 30 sec following egg—sperm fusion and proceeded continuously thereafter. Within 15 h after fusion most of the organelles became more densely grouped around the nucleus of the zygote. In the in vitro produced zygote the location of the cell organelles and of the dividing nucleus showed polarity. Two nucleoli were first observed 18 h after gamete fusion. The zygotic nucleus remained undivided for about 40 h. The first cell division was observed 40–60 h, generally 42–46 h, after egg—sperm fusion. The non-fused egg cell could be triggered to sporophytic development in vitro by pulses of high amounts of 2,4-D. Without such a treatment, cultured egg cells of different maize lines did not divide. Although nuclear fusion seemed to occur, fusion products of two egg cells also did not divide. Cell wall formation was incomplete and non-uniform, showing a polarity of cultured egg cells and fusion products of two egg protoplasts. Cell division was also induced after fusion of maize egg with sperms of genetically remote species, such as Coix, Sorghum, Hordeum or Triticum . These gametic heterologous fusion products developed to microcalli. Moreover, cell division occurred in fusion products of an egg and a diploid somatic cell-suspension protoplast from maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号