首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2-Carboxyarabinitol 1-phosphate (CAIP) is involved in the regulationof ribulose 1,5-bisphosphate carboxylase (rubisco) activityin many plants, but the biochemical pathway for its synthesisis unknown. In an attempt to induce synthesis of 14C-CAIP invivo, intact leaflets of Phaseolus vulgaris were pulse-labeledwith 14CO2 and chased with 12CO2 under conditions which resultin leaves accumulating unlabeled CAIP. Sugar-phosphates wereisolated from leaf extracts by anion exchange chromatographyand constituent metabolites were separated by 2D-thin-layerchromatography. No l4C-labeled CAIP was recovered from extractsprepared from leaves experiencing a range of exposure/chaseconditions, a range of leaf/plant ages, or from other speciesdiffering in their ability to accumulate unlabeled CAIP. Appropriatecontrol experiments indicated no loss of 14C-standard whichhad been added at the time of killing the leaf. The data suggestthat carboxyarabinitol 1-phosphate is not synthesized in vivoas some "misfire" catalysis by rubisco, and that the precursorto its synthesis is far "downstream" of CO2 fixation. (Received May 11, 1990; Accepted July 19, 1990)  相似文献   

2.
The activation of purified ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) has been studied in the presence of sugar phosphates, and the effect of rubisco activase on this process determined. During an 11-minute time course at pH 7.7 and 11 micromolar CO2, the activation of rubisco was strongly inhibited by ribulose-1,5-bisphosphate (4 millimolar), fructose-1,6-bisphosphate (1 millimolar) and ribose 5-phosphate (5 millimolar), but this inhibition was overcome by the addition of rubisco activase and activation then proceeded to a greater extent than spontaneous activation of rubisco. Glycerate 3-phosphate (20 millomolar) slowed the initial rate but not the extent of activation and rubisco activase had no effect on this. The activation of rubisco was shown to be affected by phosphoenolpyruvate (3 millimolar) but not by creatine phosphate (3 millimolar) or ATP (3 millimolar), and the creatine-phosphate/creatine phosphokinase system was used to generate the high ATP/ADP quotients required for rubisco activase to function. ATP was shown to be required for the rubisco activase-dependent rubisco activation in the presence of fructose-1,6-bisphosphate (1 millimolar). It is concluded that rubisco activase has a mixed specificity for some sugar phosphate-bound forms of rubisco, but has low or no activity with others. Some possible bases for these differences among sugar phosphates are discussed but remain to be established.  相似文献   

3.
Purification and assay of rubisco activase from leaves   总被引:18,自引:10,他引:8       下载免费PDF全文
Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase protein was purified from spinach leaves by ammonium sulfate precipitation and ion exchange fast protein liquid chromatography. This resulted in 48-fold purification with 70% recovery of activity and yielded up to 18 milligrams of rubisco activase protein from 100 grams of leaves. Based on these figures, the protein comprised approximately 2% by weight of soluble protein in spinach (Spinacia oleracea L.) leaves. The preparations were at least 95% pure and were stable when frozen in liquid nitrogen. Addition of ATP during purification and storage was necessary to maintain activity. Assay of rubisco activase was based on its ability to promote activation of rubisco in the presence of ribulose-1,5-bisphosphate. There was an absolute requirement for ATP which could not be replaced by other nucleoside phosphates. The initial rate of increase of rubisco activity and the final rubisco specific activity achieved were both dependent on the concentration of rubisco activase. The initial rate was directly proportional to the rubisco activase concentration and was used as the basis of activity. The rate of activation of rubisco was also dependent on the rubisco concentration, suggesting that the activation process is a second order reaction dependent on the concentrations of both rubisco and rubisco activase. It is suggested that deactivation of rubisco occurs simultaneously with rubisco activase-mediated activation, and that rubisco activation state represents a dynamic equilibrium between these two processes.  相似文献   

4.
The rate of CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) following addition of ribulose 1,5-bisphosphate (RuBP) to fully activated enzyme, declined with first-order kinetics, resulting in 50% loss of rubisco activity after 10 to 12 minutes. This in vitro decline in rubisco activity, termed fall-over, was prevented if purified rubisco activase protein and ATP were added, allowing linear rates of CO2 fixation for up to 20 minutes. Rubisco activase could also stimulate rubisco activity if added after fallover had occurred. Gel filtration of the RuBP-rubisco complex to remove unbound RuBP allowed full activation of the enzyme, but the inhibition of activated rubisco during fallover was only partially reversed by gel filtration. Addition of alkaline phosphatase completely restored rubisco activity following fallover. The results suggest that fallover is not caused by binding of RuBP to decarbamylated enzyme, but results from binding of a phosphorylated inhibitor to the active site of rubisco. The inhibitor may be a contaminant in preparations of RuBP or may be formed on the active site but is apparently removed from the enzyme in the presence of the rubisco activase protein.  相似文献   

5.
Light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and stromal ATP content were measured in intact isolated spinach chloroplasts. Treatments which decreased stromal ATP, such as incubation with the ATP analog β,γ-methylene adenosine triphosphate or with the energy transfer inhibitor phloridzin inhibited the light activation of rubisco. In the absence of added inorganic phosphate (Pi), light activation of rubisco was inhibited, coincident with low stromal ATP. Addition of methyl viologen restored both stromal ATP and rubisco activity to levels observed in the presence of Pi. Activation of rubisco was inhibited in the presence of 2 millimolar dihydroxyacetone phosphate or 3-phosphoglycerate and stromal ATP was also decreased under these conditions. Both were partially restored by increasing the Pi concentration. The strong correlation between activation state of rubisco and stromal ATP concentration in intact chloroplasts under a wide variety of experimental conditions indicates that light activation of rubisco is dependent on ATP and proportional to the ATP concentration. These observations can be explained in terms of the rubisco activase protein, which mediates activation of rubisco at physiological concentrations of CO2 and ribulose-1,5-bisphosphate and is dependent upon ATP.  相似文献   

6.
Photosynthetic rates of outdoor-grown soybean (Glycine max L.Merr. cv. Bragg) canopies increased with increasing CO2 concentrationduring growth, before and after canopy closure (complete lightinterception), when measured over a wide range of solar irradiancevalues. Total canopy leaf area was greater as the CO2 concentrationduring growth was increased from 160 to 990 mm3 dm–3.Photosynthetic rates of canopies grown at 330 and 660 mm3 CO2dm–3 were similar when measured at the same CO2 concentrationsand high irradiance. There was no difference in ribulose bisphosphatecarboxylase/oxygenase (rubisco) activity or ribulose 1,5-bisphosphate(RuBP) concentration between plants grown at the two CO2 concentrations.However, photosynthetic rates averaged 87% greater for the canopiesgrown and measured at 660 mm3 CO2 dm–3. A 10°C differencein air temperature during growth resulted in only a 4°Cleaf temperature difference, which was insufficient to changethe photosynthetic rate or rubisco activity in canopies grownand measured at either 330 or 660 mm3 CO2 dm–3. RuBP concentrationsdecreased as air temperature during growth was increased atboth CO2 concentrations. These data indicate that the increasedphotosynthetic rates of soybean canopies at elevated CO2 aredue to several factors, including: more rapid development ofthe leaf area index; a reduction in substrate CO2 limitation;and no downward acclimation in photosynthetic capacity, as occurin some other species. Key words: CO2 concentration, soybean, canopy photosynthesis  相似文献   

7.
Effects of Nitrogen Nutrition on Photosynthesis in Cd-treated Sunflower Plants   总被引:10,自引:0,他引:10  
Increased nitrogen supply stimulates plant growth and photosynthesis.Since it was shown that heavy metals may cause deficienciesof essential nutrients in plants the potential reversal of cadmiumtoxicity by increased N nutrition was investigated. The effectson photosynthesis of low Cd (0, 0.5, 2 or 5 mmol m-3) combinedwith three N treatments (2, 7.5 or 10 mol m-3) were examinedin young sunflower plants. Chlorophyll fluorescence quenchingparameters were determined at ambient CO2and at 100 or 800 µmolquanta m-2 s-1. The vitality index (Rfd) decreased approx. three-timesin response to 5 mmol m-3Cd, at 2 and 10 mol m-3N. The maximumphotochemical efficiency of PSII reaction centres (Fv/ Fm) wasnot influenced by Cd or N treatment. The highest Cd concentrationdecreased quantum efficiency of PSII electron transport (II)by 30%, at 2 and 10 mol m-3N, mostly due to increased closureof PSII reaction centres (qP). Photosynthetic oxygen evolutionrates at saturating CO2were decreased in plants treated with5 mmol m-3Cd, at all N concentrations. The results indicatethat Cd treatment affected the ribulose-1,5-bisphosphate (RuBP)regeneration capacity of the Calvin cycle more than other processes.At the same time, the amounts of soluble and ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) protein increased with Cd treatment.Decreased photosynthesis, but substantially increased Rubiscocontent, in sunflower leaves under Cd stress indicate that asignificant amount of Rubisco protein is not active in photosynthesisand could have another function. It is shown that optimal nitrogennutrition decreases the inhibitory effects of Cd in young sunflowerplants. Copyright 2000 Annals of Botany Company Helianthus annuus L., cadmium, nitrogen, photosynthesis, Rubisco, sunflower  相似文献   

8.
We have utilized the cellular differentiation gradient and photomorphogenic responses of the first leaf of 7-day-old barley (Hordeum vulgare L.) to examine the accumulation of mRNA and protein encoded by the ribulose-1,5-biphosphate carboxylase holoenzyme (rubisco) activase gene (rca). Previous studies have revealed a pattern of coordinate expression of rubisco subunit polypeptides during development. We compared the expression of rubisco polypeptides and mRNAs with those encoded by rca. The mRNAs encoding both rubisco activase and rubisco are expressed exclusively in leaf tissue of 7-day-old barley seedlings; mRNAs and polypeptides of rca accumulate progressively from the leaf base in a pattern that is qualitatively similar to that of rubisco subunit mRNAs and polypeptides. The parallel pattern of rca protein and mRNA accumulation indicate that a primary control of rca gene expression in this system lies at the level of mRNA production. Light-induced expression of rca in etiolated barley follows a different pattern from that of the acropetal barley leaf gradient, however. Etiolated, 7-day-old barley seedlings contain levels of rca mRNA near the limit of detection in Northern blot hybridization assays. White light induces a 50- to 100-fold accumulation of rca mRNA, which is detectable within 30 min after the onset of illumination. In contrast, steady state levels of mRNAs encoding the small rubisco subunit are affected little by light, and mRNAs encoding the large subunit accumulate about 5-fold in response to illumination. While rca mRNA levels are low in etiolated barley leaves, levels of the protein are approximately 50 to 75% of those found in fully green leaves.  相似文献   

9.
The effect of photosynthetic photon flux density (PPFD) on carboxylationefficiency, estimated as the initial slope (IS) of net CO2 assimilationrate versus intercellular CO2 partial pressure response curve,as well as on ribulose-1, 5-bisphosphate carboxylase (Rubisco)activation was measured in Trifolium subterraneum L. leavesunder field conditions. The relationship between IS and PPFDfits a logarithmic curve. Rubisco activation accounts for theIS increase only up to a PPFD of 550 µmol photons m-2s-1. Further IS increase, between 550 and 1000 µmol photonsm-2 s-1, could be related to a higher ribulose fcwphosphate(RuBP) availability. The slow, but sustained IS increase above1000 µmol photons m-2 s-1 could be explained by the mesophyllCO2 diffusion barriers associated with the high chlorophylland protein content in field developed leaves. Key words: Photosynthesis, initial slope, ribulose-1, 5-bissphosphate carboxylase activation, light response, Trifolium subterraneum L  相似文献   

10.
Chlorella cells incubated in the dark longer than 12 hr showedpronounced blue light-induced 14CO2 fixation into aspartate,glutamate, malate and fumarate (blue light effect), whereasthose kept under continuous light showed only a slight bluelight effect, if any. 2) During dark incubation of Chlorellacells, phosphoenolpyruvate carboxylase activity and the capacityfor dark 14CO2 fixation decreased significantly, whereas ribulose-1,5-diphosphatecarboxylase activity and the capacity for photosynthetic 14CO2fixation (measured under illumination of white light at a highlight intensity) did not decrease. 3) In cells preincubatedin the dark, intracellular levels of phosphoenolpyruvate and3-phosphoglycerate determined during illumination with bluelight were practically equal to levels determined during illuminationwith red light. 4) The blue light effect was not observed incells incubated widi chloramphenicol, indicating that blue light-inducedprotein synthesis is involved in the mechanism of the effect. (Received April 9, 1971; )  相似文献   

11.
Light Activation of Rubisco by Rubisco Activase and Thylakoid Membranes   总被引:1,自引:0,他引:1  
A reconstituted system comprising ribulose bisphosphate carboxylase/oxygenase(rubisco), rubisco activase, washed thylakoid membranes, andATP was used to demonstrate a light-dependent stimulation ofrubisco activation. ATP, ribulose bisphosphate, H+, and Mg2+concentrations are normally light-dependent variables in thechloroplast but were maintained at pre-determined levels. Resultsindicated that rubisco activase and washed thylakoid membranesare sufficient to catalyze light stimulation of rubisco activationwith the reconstituted system, and that rubisco activase isrequired for this light stimulation. The washed thylakoid membranesdid not exhibit rubisco activase activity, nor was rubisco activaseprotein detected immunologically. Light-dependent activationof rubisco in the reconstituted system was similar in whole-chainand PS I electron transport reactions, and saturated at approximately100 µmol photons m–2 s–1. 1 Present address: Department of Biological Sciences, LouisianaTech University, Ruston, LA 71272, U.S.A.  相似文献   

12.
Photosynthetic CO2 exchange in photorespiration mutants of Arabidopsisthaliana showed a time-dependent inhibition at 350 µl/literCO2 in 50% O2 but not in 2% O2. In a glycolate-P phos-phatasedeficient mutant, inhibition of photosynthesis was due to adepletion of ribulosebisphosphate. In the remaining mutants,which have defects in photorespiratory enzymes which metabolizeamino acids, reduced photosynthesis was accompanied by a declinein the activation level of ribulosebisphosphate carboxylase/oxygenase(Chastain and Ogren 1985), a decline in ribulosebisphosphateconcentration, and an accumulation of glyoxylate. Addition ofglyoxylate at submillimolar concentrations to intact spinach(Spinacea oleracea L.) chloroplasts inhibited light activationof ribulosebisphosphate carboxylase/oxygenase (rubisco) andCO2 fixation. Similar concentrations of glyoxylate had no effecton A. thaliana rubisco activity in vitro. These results suggestthat glyoxylate accumulation indirectly inhibited rubisco activationstate in vivo. The inhibition of photosynthesis in mutants whichaccumulate glyoxylate may be attributed to a decline in ribulosebisphosphateconcentration, a reduction in rubisco activation state, or acombination of both phenomena. 3Present address: CSIRO, Division of Plant Industry, GPO Box1600, Canberra, ACT 2601, Australia. (Received May 12, 1989; Accepted July 8, 1989)  相似文献   

13.
Amounts of the enzyme ribulose-1,5-bisphosphate carboxylasewere estimated in seedling leaves of barley (Hordewn vulgareL.) and flag leaves of wheat (Triticum aestitum L.) by radialimmuno diffusion. A fourfold variation among barley varietiesfor amount of RuBPCase at the seedling stage was observed (c.3.5–15mg g–1 fr. wt). Range in variation for amountof flag leaf RuBPCase among wheat varieties was 6-09-9.39 mgRuBPCase g–1 fr. wt. F1 hybrids from interspecific andintergeneric crosses of crested wheatgrasses (Agropyron andElymus spp.) and their amphidiploid analogues were comparedfor amount of RuBPCase in the most recent fully expanded leavesharvested before seed set. Amount of enzyme varied from 3.4to 77.6 mg g–1 fr. wt among the hybrids. No effect chromosomenumber on enzyme concentration was observed among 13 hybridsand their amphidiploid counterparts. Key words: RuBPCase, wheatgrasses  相似文献   

14.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase activity was obtained from a partially purified extract of Escherichia coli transformed with a 1.6-kilobase spinach (Spinacia oleracea L.) cDNA clone. This activity was ATP-dependent. Catalysis of rubisco activation by spinach and cloned rubisco activase was accompanied by the same extent of carboxyarabinitol bisphosphate-trapped 14CO2 as occurred in spontaneous activation, indicating that rubisco carbamylation is one facet of the rubisco activase reaction. The CO2 concentration required for one-half maximal rubisco activase activity was about 8 micromolar CO2. These observations are consistent with the postulated role of rubisco activase in regulating rubisco activity in vivo.  相似文献   

15.
Limitation of photosynthesis and light activation of ribulose,1,5-bisphosphate carboxylase (RuBPCO) were examined in the 5thleaf of seedlings of red clover (Trifolium pratense L. cv. Renova)for 5 d following an increase in photosynthetic photon fluxdensity (PPFD) from 200 to 550µmol quanta m–2 s–1.Net photosynthesis and its stimulation at 2.0 kPa O2 initialactivity of rapidly extracted RuBPCO, standard activity of RuBPCOafter incubation of the extracts in the presence of CO2, Mg2+,and inorganic phosphate and contents of soluble protein, starch,soluble sugars, and various photosynthetic metabolites weredetermined. Photosynthesis decreased and starch content increased.No decrease in photosynthesis was found if, when PPFD was increased,all leaves except the investigated 5th leaf were removed, suggestingthat the decrease in photosynthesis was due to accumulated carbohydrates.The stimulation of photosynthesis at 2.0 kPa O2 did not decreaseand the ratio of the total foliar steady-state contents of triosephosphate to 3-phosphoglycerate increased suggesting that thedecrease in photosynthesis was not due to limiting inorganicphosphate in chloroplasts. Intercellular CO2 partial pressureand RuBP content were not decreased. Nevertheless, the ratioof photosynthesis to initial RuBPCO activity decreased, suggestingthat the catalysis per active RuBPCO site was decreased. Theincrease in PPFD in the growth cabinet and the PPFD at whichleaves were preconditioned for 1 h, affected not only initialactivity but also the standard activity of RuBPCO. The resultssuggest that a varying proportion of RuBPCO was bound to membranesand was contained in the insoluble fraction of the extracts.A comparison of photosynthesis with extracted RuBPCO activitysuggested that membrane bound RuBPCO did not contribute to photosyntheticCO2 fixation and that the binding and release to and from membranesmodulated actual RuBPCO activity in vivo. Key words: Photosynthesis, ribulose 1,5-bisphosphate carboxylase, starch  相似文献   

16.
17.
HEUER  BRURIA; PLAUT  Z. 《Annals of botany》1981,48(3):261-268
The influence of salinity in the growing media on ribulose-1,5-bisphosphate (RuBP) carboxylase and on CO2 fixation by intactsugar beet (Beta vulgaris) leaves was investigated. RuBP carboxylase activity was mostly stimulated in young leavesafter exposure of plants for 1 week to 180 mM NaCl in the nutrientsolution. This stimulation was more effective at the higherNaHCO2 concentrations in the reaction medium. Salinity also enhanced CO2 fixation in intact leaves mostlyat rate-limiting light intensities. A 60 per cent stimulationin CO2 fixation rate was obtained by salinity under 450 µEm–2 s–1. At quantum flux densities of 150 µEm–2 s–1 (400–700 nm) this stimulation was280 per cent. Under high light intensities no stimulation bysalinity was found. In contrast, water stress achieved by directleaf desiccation or by polyethylene glycol inhibited enzymeactivity up to fourfold at –1.2 MPa. Beta vulgaris, sugar beet, ribulose-1, 5-bisphosphate carboxylase, salt stress, water stress, carbon dixoide fixation, salinity  相似文献   

18.
At bicarbonate concentrations equivalent to air levels of CO2, activation of ribulosebisphosphate carboxylase/oxygenase (rubisco) was inhibited by micromolar concentrations of glyoxylate in intact, lysed, and reconstituted chloroplasts and in stromal extracts. The concentration of glyoxylate required for 50% inhibition of light activation in intact chloroplasts was estimated to be 35 micromolar. No direct inhibition by glyoxylate was observed with purified rubisco or rubisco activase at micromolar concentrations. Levels of ribulose 1,5-bisphosphate and ATP increased in intact chloroplasts following glyoxylate treatment. Results from experiments with well-buffered lysed and reconstituted chloroplast systems ruled out lowering of pH as the cause of inhibition. With intact chloroplasts, micromolar glyoxylate did not prevent activation of rubisco at high (10 mM) concentrations of bicarbonate, indicating that rubisco could be spontaneously activated in the presence of glyoxylate. These results suggest the existence of a component of the in vivo rubisco activation system that is not yet identified and which is inhibited by glyoxylate.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - rubisco ribulosebisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

19.
Photorespiration rates under air-equilibrated conditions (0.04%CO2 and 21% O2) were measured in Chlamydomonas reinhardtii wild-type2137, a phosphoglycolate-phosphatase-deficient (pgp1) mutantand a suppressor double mutant (7FR2N) derived from the pgp1mutant. In both cells grown under 5% CO2 and adapted air for24 h in the suppressor double mutant, the maximal rate of photorespiration(phosphoglycolate synthesis) was only about half of that ineither the wild type or the pgp1 mutant (18-7F) cells. In theprogeny, the reduced rate of photorespiration was accompaniedby increased photosynthetic affinity for inorganic carbon andthe capacity for growth under air whether accompanied by thepgp1 background or not. Tetrad analyses suggested that thesethree characteristics all resulted from a nuclear single-genemutation at a site unlinked to the pgp1 mutation. The decreasein photorespiration was, however, not due to an increase inthe CO2/O2 relative specificity of ribulose-1,5-bisphosphatecarboxylase/oxygenase of 7FR2N or of any other suppressor doublemutants tested. The relationship between the decrease in therate of photorespiration and the CO2-concentrating mechanismis discussed. 3 Current address: Institute of Botany, Academy of Sciences,Patamdar Shosse, 40, Baku, 370073, Azerbaijan. 4 Current address: Department of Management and InformationScience, Jobu University, 270-1, Shinmachi, Tano, Gunma, 370-1393Japan.  相似文献   

20.
The influence of temperature on photosynthesis and transpirationwas studied in ten varieties of Lolium perenne, L. multiflorum,Dactylis glomerata, and Festuca arundinacea from three climaticorigins grown in three different controlled environments (15?C, 72 W m-2 visible irradiation, 16-h photoperiod; 25 ?C, 72W m-2 visible irradiation, 16-h photoperiod; and 25 ?C, 180W m-2 visible irradiation, 16-h photoperiod) and in the glasshousein July/August. The optimum temperature for photosynthesis was influenced primarilyby growth environment; growth at low temperature (15 ?C) resultedin a low optimum temperature, which differed little from varietyto variety. The maximum CO2-exchange rate was influenced bygrowth environment and by variety. Within a variety, plantsgrown at higher light intensity or lower temperature had a greaterCO2-exchange rate. Seven varieties showed a negative correlationbetween the optimum leaf temperature and the maximum CO2-exchangerate. Activation energies for photosynthesis were influencedby growth environment only. There were marked varietal differences in the values of leafresistances (ra + rt) obtained from transpiration data at theoptimum leaf temperature for CO2 exchange. In Lolium, and Dactylisthe Mediterranean varieties had higher leaf resistances thanthe Northern varieties with the maritime varieties intermediate.In general the Dactylis varieties had higher resistances thanthe corresponding Lolium and Festuca varieties. Only at highgrowth temperatures was (ra+rl) insensitive to temperature;otherwise an activation energy of about 10 kcal/mole was observed.A negative correlation was found between mean varietal diffusionresistances (ra+rl), and corresponding maximum CO2-exchangerates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号