首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Addition of plasma membrane depolarizing agents, such as dinitrophenol (DNP) and azide, to cells of Saccharomyces cerevisiae under aerobic conditions, is known to cause an increase in the cAMP level within 15 s. We found that both compounds lowered the intracellular pH (measured by in vivo 32P-NMR) drastically within the same time period. Plasma membrane depolarization, however, was much slower: DNP and azide had no effect on the membrane potential during, respectively, the first 2 min and the first 10 min after addition. Apparently, the intracellular pH of yeast is much more sensitive to perturbation than the membrane potential. The effect of both compounds on the cAMP level was highly dependent on the extracellular pH: when the latter was raised, the effect disappeared completely between pH 6 and 7. A similar dependence on the extracellular pH was observed for the lowering of intracellular pH. Addition of organic acids, such as acetate and butyrate, at low pH and under aerobic conditions, also caused an immediate increase in the cAMP level and an immediate drop in the intracellular pH. These results suggest that agents such as DNP and azide do not raise the cAMP level in yeast cells because of their membrane depolarizing properties but because they lower the intracellular pH. Under anaerobic conditions, DNP, azide and organic acids were much less effective in increasing the cAMP level. Addition of a small amount of glucose, however, restored their capacity to enhance the cAMP level. This suggests that under anaerobic conditions and in the absence of glucose the ATP level is a limiting factor for cAMP synthesis.  相似文献   

2.
Influx of 45Ca2+ into Saccharomyces cerevisiae was measured under experimental conditions which enabled measurements of initial rate of transport across the plasma membrane, without interference by the vacuolar Ca2+ transport system. Addition of glucose or glycerol to the cells, after pre-incubation in glucose-free medium for 5 min, caused a rapid, transient increase in 45Ca2+ influx, reaching a peak at 3-5 min after addition of substrate. Ethanol, or glycerol added with antimycin A, had no effect on 45Ca2+ influx. We have shown previously that this increase is not mediated by an effect of the substrates on intracellular ATP levels. Changes in membrane potential accounted for only a part of the glucose-stimulated 45Ca2+ influx. The roles of intracellular acidification and changes in cellular cAMP in mediating the effects of glucose on 45Ca2+ influx were examined. After a short preincubation in glucose-free medium addition of glucose caused a decrease in the intracellular pH, [pH]i, which reached a minimum value after 3 min. A transient increase in the cellular cAMP level was also observed. Addition of glycerol also caused intracellular acidification, but ethanol or glycerol added with antimycin A had no effect on [pH]i. Artificial intracellular acidification induced by exposure to isobutyric acid or to CCCP caused a transient rise in Ca2+ influx but the extent of the increase was smaller than that caused by glucose, and the time-course was different. We conclude that intracellular acidification may be responsible for part of the glucose stimulation of Ca2+ influx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae induces a transient, specific cAMP signal. Intracellular acidification in these cells, as caused by addition of protonophores like 2,4-dinitrophenol (DNP) causes a large, lasting increase in the cAMP level. The effect of glucose and DNP was investigated in glucose-repressed wild type cells and in cells of two mutants which are deficient in derepression of glucose-repressible proteins, cat1 and cat3. Addition of glucose to cells of the cat3 mutant caused a transient increase in the cAMP level whereas cells of the cat1 mutant and in most cases also repressed wild type cells did not respond to glucose addition with a cAMP increase. The glucose-induced cAMP increase in cat3 cells and the cAMP increase occasionally present in repressed wild type cells however could be prevented completely by addition of a very low level of glucose in advance. In derepressed wild type cells this does not prevent the specific glucose-induced cAMP signal at all. These results indicate that repressed cells do not show a true glucose-induced cAMP signal. When DNP was added to glucose-repressed wild type cells or to cells of the cat1 and cat3 mutants no cAMP increase was observed. Addition of a very low level of glucose before the DNP restored the cAMP increase which points to lack of ATP as the cause for the absence of the DNP effect. These data show that intracellular acidification is able to enhance the cAMP level in repressed cells. The glucose-induced artefactual increase occasionally observed in repressed cells is probably caused by the fact that their low intracellular pH is only restored after the ATP level has increased to such an extent that it is no longer limiting for cAMP synthesis. It is unclear why the artefactual increases are not always observed. Measurement of glucose- and DNP-induced activation of trehalase confirmed the physiological validity of the changes observed in the cAMP level. Our results are consistent with the idea that the glucose-induced signaling pathway contains a glucose-repressible protein and that the protein is located before the point where intracellular acidification triggers activation of the pathway.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DNP 2,4-dinitrophenol - Mes 4-morpholineethanesulfonic acid  相似文献   

4.
《FEBS letters》1985,186(1):75-79
It has been reported that addition of glucose to cells of Saccharomycescerevisiae grown on a sugar-free medium causes a peak of intracellular cAMP levels. Also, it has been proposed that this effect might be mediated by plasma membrane depolarization. However, here, we observed a hyperpolarizing effect of glucose in S. cerevisiae and, in addition, no change in cAMP levels when depolarization was induced by valinomycin in the presence of K+. In contrast, treatments that induced a rapid intracellular acidification such as addition of the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone at pH 5.5 but not at pH 8.0, extracellular pH shift from 8.5 to 3.5, and glucose itself, also increased the cyclic nucleotide. Thus, our data strongly support the hypothesis that intracellular acidification mediates the effect of glucose on cAMP levels.  相似文献   

5.
Addition of glucose to a yeast suspension can produce both an increase in the level of cAMP and a decrease in the intracellular pH. This observation led to the idea that internal acidification triggers the cAMP increase. We have tested this hypothesis using different approaches. To study the effect of sugar metabolism on internal pH we added to the yeast either glucose or a sugar, like xylose, that cannot be phosphorylated. We also utilized yeast strains lacking hexose kinases or phosphoglucose isomerase. We found that phosphorylation of the sugar added is a requisite for internal acidification but not for the cAMP increase. Internal acidification is due to an imbalance between the rate of the metabolic reactions that generate protons and the rate at which protons can be pumped out of the cell. We have manipulated the excretion of protons by using yeast harvested at different phases of growth and resuspended in a medium with or without added K+. Addition of glucose produced a marked drop in internal pH only when the yeast was harvested in the stationary phase of growth and transferred to a medium without added K+. In contrast an increase in cAMP was observed in all situations. We conclude that in yeast there is no correlation between internal acidification and cAMP increase.  相似文献   

6.
Glucose-induced cAMP signalling in Saccharomyces cerevisiae requires extracellular glucose detection via the Gpr1-Gpa2 G-protein coupled receptor system and intracellular glucose-sensing that depends on glucose uptake and phosphorylation. The glucose uptake requirement can be fulfilled by any glucose carrier including the Gal2 permease or by intracellular hydrolysis of maltose. Hence, the glucose carriers do not seem to play a regulatory role in cAMP signalling. Also the glucose carrier homologues, Snf3 and Rgt2, are not required for glucose-induced cAMP synthesis. Although no further metabolism beyond glucose phosphorylation is required, neither Glu6P nor ATP appears to act as metabolic trigger for cAMP signalling. This indicates that a regulatory function may be associated with the hexose kinases. Consistently, intracellular acidification, another known trigger of cAMP synthesis, can bypass the glucose uptake requirement but not the absence of a functional hexose kinase. This may indicate that intracellular acidification can boost a downstream effect that amplifies the residual signal transmitted via the hexose kinases when glucose uptake is too low.  相似文献   

7.
Addition of glucose or related fermentable sugars to derepressed cells of the yeast Saccharomyces cerevisiae triggers a RAS-protein-mediated cAMP signal, which induces a protein phosphorylation cascade. Yeast strains without a functional CDC25 gene were deficient in basal cAMP synthesis and in the glucose-induced cAMP signal. Addition of dinitrophenol, which in wild-type strains strongly stimulates in vivo cAMP synthesis by lowering intracellular pH, did not enhance the cAMP level. cdc25 disruption mutants, in which the basal cAMP level was restored by the RAS2val19 oncogene or by disruption of the gene (PDE2) coding for the high-affinity phosphodiesterase, were still deficient in the glucose- and acidification-induced cAMP responses. These results indicate that the CDC25 gene product is required not only for basal cAMP synthesis in yeast but also for specific activation of cAMP synthesis by the signal transmission pathway leading from glucose to adenyl cyclase. They also show that intracellular acidification stimulates the pathway at or upstream of the CDC25 protein. When shifted to the restrictive temperature, cells with the temperature sensitive cdc25-5 mutation lost their cAMP content within a few minutes. After prolonged incubation at the restrictive temperature, cells with this mutation, and also those with the temperature sensitive cdc25-1 mutation, arrested at the 'start' point (in G1) of the cell cycle, and subsequently accumulated in the resting state G0. In contrast with cdc25-5 cells, however, the cAMP level did not decrease and normal glucose- and acidification-induced cAMP responses were observed when cdc25-1 cells were shifted to the restrictive temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The cellular level of cyclic 3',5'-AMP (cAMP) in the cyanobacteriumAnabaena cylindrica changed transiently in response to changesin extracellular environments. When the cells were transferedfrom dark to light, or anaerobic to aerobic conditions in thedark, the cAMP level rapidly decreased within one min and thengradually recovered. Addition of carbonyl cyanide m-chlorophenylhydrazone(CCCP) which inhibits ATP synthesis caused an increase in cAMPlevel in the light but not in the dark. The level of cAMP increasedseveral fold by lowering the pH from 8 to 6. On the contrary,a rise of pH from 6 to 8 caused a decrease in the cAMP level.It is suggested that the change in membrane electrochemicalpotential is involved in the regulation of cellular cAMP concentration. (Received January 27, 1989; Accepted June 19, 1989)  相似文献   

9.
Adenylate cyclase activity in Saccharomyces cerevisiae is dependent on Ras proteins. Both addition of glucose to glucose-deprived (derepressed) cells and intracellular acidification trigger an increase in the cAMP level in vivo. We show that intracellular acidification, but not glucose, causes an increase in the GTP/GDP ratio on the Ras proteins independent of Cdc25 and Sdc25. Deletion of the GTPase-activating proteins Ira1 and Ira2, or expression of the RAS2(val19) allele, causes an enhanced GTP/GDP basal ratio and abolishes the intracellular acidification-induced increase. In the ira1Delta ira2Delta strain, intracellular acidification still triggers a cAMP increase. Glucose also did not cause an increase in the GTP/GDP ratio in a strain with reduced feedback inhibition of cAMP synthesis. Further investigation indicated that feedback inhibition by cAPK on cAMP synthesis acts independently of changes in the GTP/GDP ratio on Ras. Stimulation by glucose was dependent on the Galpha-protein Gpa2, whose deletion confers the typical phenotype associated with a reduced cAMP level: higher heat resistance, a higher level of trehalose and glycogen and elevated expression of STRE-controlled genes. However, the typical fluctuation in these characteristics during diauxic growth on glucose was still present. Overexpression of Ras2(val19) inhibited both the acidification- and glucose-induced cAMP increase even in a protein kinase A-attenuated strain. Our results suggest that intracellular acidification stimulates cAMP synthesis in vivo at least through activation of the Ras proteins, while glucose acts through the Gpa2 protein. Interaction of Ras2(val19) with adenylate cyclase apparently prevents its activation by both agonists.  相似文献   

10.
In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras-mediated long-lasting cAMP increase. Addition of glucose to cells grown on a non-fermentable carbon source or to stationary-phase cells triggers a transient burst in the intracellular cAMP level. This glucose-induced cAMP signal is dependent on the G alpha-protein Gpa2. We show that the G-protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val-132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose-induced loss of heat resistance, which is consistent with its lack of glucose-induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose-sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK-controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE-controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose-sensing system must signal glucose availability for the Sch9-dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.  相似文献   

11.
The phosphorylation of fructose-1,6-bisphosphatase is preceded by a transient increase in the intracellular level of cyclic AMP which activates a cyclic AMP-dependent protein kinase (Pohlig, G., and Holzer, H. (1985) J. Biol. Chem. 260, 13818-13823). Possible mechanisms by which sugars or ionophores might activate adenylate cyclase and thereby lead to an increase in cyclic AMP concentrations were studied. Studies with permeabilized yeast cells demonstrated that neither sugar intermediates nor carbonyl cyanide m-chlorophenylhydrazone are able to increase adenylate cyclase activity. In the light of striking differences of the effects of fermentable sugars and of carbonyl cyanide m-chlorophenylhydrazone on parameters characterizing the membrane potential, it seems not reasonable that the activity of adenylate is under control of the membrane potential. Rapid quenching of 9-aminoacridine fluorescence after addition of fermentable sugars to starved yeast cells indicated an intracellular acidification. The 31P NMR technique showed a fast drop of the intracellular pH from 6.9 to 6.55 or 6.4 immediately after addition of glucose or carbonyl cyanide m-chlorophenylhydrazone. The time course of the decrease of the cytosolic pH coincides with the transient increase of cyclic AMP concentration and the 50% inactivation of fructose-1,6-bisphosphatase under the conditions of the NMR experiments. Kinetic studies of adenylate cyclase activity showed an approximately 2-fold increase of activity when the pH was decreased from 7.0 to 6.5, which is the result of a decrease in the apparent Km for ATP with no change in Vmax. These studies suggest that activation of adenylate cyclase by decrease in the cytosolic pH starts a chain of events leading to accumulation of cyclic AMP and phosphorylation of fructose-1,6-bisphosphatase.  相似文献   

12.
Addition of glucose to yeast cells causes a phosphorylation and an inactivation of the gluconeogenic enzyme fructose-bisphosphatase [Mazón, M.J., Gancedo, J.M., and Gancedo, C. (1982) J. Biol. Chem. 257, 1128-1130]. We report here that the addition of the proton ionophores 2,4-dinitrophenol and carbonylcyanide m-chlorophenylhydrazone to yeast cells produces the same effect as that of glucose. Both glucose and ionophores produced: (a) phosphorylation and inactivation of fructose-bisphosphatase, (b) an immediate rise in the intracellular concentration of cAMP, (c) an instant inhibition of the transport of amino acids driven by the membrane potential. It is proposed that the effect of glucose on fructose-bisphosphatase involves as a first step the depolarization of the plasma membrane resulting in an increase of the intracellular concentration of cAMP. This in turn would stimulate phosphorylation of fructose-bisphosphatase.  相似文献   

13.
Trehalase activation in yeasts is mediated by an internal acidification   总被引:2,自引:0,他引:2  
It has been reported that the addition of glucose, uncouplers and nystatin to yeast cells grown in a sugarfree medium causes trehalase activation; it has been postulated that this activation might be mediated by the depolarization of the plasma membrane. In this article the values of membrane potential and pH gradient across the plasma membrane of Saccharomyces cerevisiae have been determined under the same conditions as those in which trehalase is activated. Membrane potential was evaluated from the distribution of triphenylmethylphosphonium, the pH gradient from the distribution of benzoic acid across the plasma membrane. When the effect of several agents on the two components of the electrochemical proton gradient across the plasma membrane of ethanol-grown yeast cells were studied, under trehalase activation conditions, the following observations were made. (a) The addition of glucose activated trehalase and caused internal acidification of the cells, but had practically no effect on the membrane potential. (b) The addition of 200 mM KCl depolarized the cell membrane but did not affect the internal pH, nor trehalase activity. (c) Although carbonyl cyanide m-chlorophenylhydrazone depolarized the cells at external pH 6.0 and 7.0, it only activated trehalase at an external pH 6.0, leading to the acidification of the internal medium at this pH. (d) Nystatin caused an increase in the triphenylmethylphosphonium accumulation at external pH 6.0 and 7.0, but only activated trehalase at external pH 6.0, causing acidification of the cell interior at this pH. (e) Activation of trehalase was also observed when the internal acidification was caused by addition of a weak acid such as acetate. It is concluded that trehalase activation is mediated by an intracellular acidification and is independent of the membrane potential.  相似文献   

14.
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 microM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.  相似文献   

15.
Addition of glucose or fructose to cells of Saccharomyces cerevisiae adapted to grow in the absence of glucose induced an acidification of the intracellular medium. This acidification appeared to be due to the phosphorylation of the sugar since: (i) glucose analogues which are not efficiently phosphorylated did not induce internal acidification; (ii) glucose addition did not cause internal acidification in a mutant deficient in all the three sugar-phosphorylating enzymes; (iii) fructose did not affect the intracellular pH in a double mutant having only glucokinase activity; (iv) glucose was as effective as fructose in inducing the internal pH drop in a mutant deficient in phosphoglucose isomerase activity; and (v) in strains deficient in two of the three sugar-phosphorylating activities, there was a good correlation between the specific glucose- or fructose-phosphorylating activity of cell extracts and the sugar-induced internal acidification. In addition, in whole cells any of the three yeast sugar kinases were capable of mediating the internal acidification described. Glucose-induced internal acidification was observed even when yeast cells were suspended in growth medium and in cells suspended in buffer containing K+, which supports the possible signalling function of the glucose-induced internal acidification. Evaluation of internal pH by following fluorescence changes of fluorescein-loaded cells indicated that the change in intracellular pH occurred immediately after addition of sugar. The apparent Km for glucose in this process was 2 mM. Changes in both the internal and external pH were determined and it was found that the internal acidification induced by glucose was followed by a partial alkalinization coincident with the initiation of H+ efflux. This reversal of acidification could be due to the activity of the H+-ATPase, since it was inhibited by diethylstilboestrol. Coincidence between internal alkalinization and the H+ efflux was also observed after addition of ethanol.  相似文献   

16.
Changes in fluorescence of 3,3′-dipropylthiodicarbocyanine iodide which had been equilibrated with suspensions of the wild-type yeast Saccharomyces cerevisiae and of respiration-deficient mutants were followed. The changes have been attributed to changes of yeast membrane potentials, since the fluorescence with wild-type yeast could be affected in a predictable manner by uncouplers and the pore-forming agent nystatin. As in other systems, a rise of steady-state fluorescence was ascribed to depolarization and a drop of the fluorescence to hyperpolarization. (1) A considerable rise in steady-state fluorescence was brought about by addition of antimycin A or some other mitochondrial inhibitors to respiring cells. A major part of the composite membrane potential monitored in intact yeast cells appeared to be represented by the membrane potential of mitochondria. (2) Addition of D-glucose and of other substrates of hexokinase, including non-metabolizable 2-deoxy-D-glucose, induced a two-phase response of fluorescence, indicating transient depolarization followed by repolarization. Such a response was not elicited by other sugars which had been reported to be transported into the cells by a glucose carrier or by D-galactose in galactose-adapted cells. The depolarization was explained by electrogenic ATP exit from mitochondria to replenish the ATP consumed in the hexokinase reaction and the repolarization by subsequent activation of respiration. (3) In non-respiring cells only a drop in fluorescence was induced by glucose and this was ascribed to an ATP-dependent polarization of the plasma membrane. (4) Steady-state fluorescence in suspensions of respiration-deficient mutants, lacking cytochrome a, cytochrome b, or both, was high and remained unaffected by uncouplers and nystatin. This indicates that membranes of the mutants may have been entirely depolarized. A partial polarization, apparently restricted to the plasma membrane, could be achieved by glucose addition.  相似文献   

17.
In the yeast Saccharomyces cerevisiae, the addition of glucose to derepressed cells and intracellular acidification trigger a rapid increase in the cAMP level within 1 min. We have identified a mutation in the genetic background of several related 'wild-type' laboratory yeast strains (e.g. ENY.cat80-7A, CEN.PK2-1C) that largely prevents both cAMP responses, and we have called it lcr1 (for lack of cAMP responses). Subsequent analysis showed that lcr1 was allelic to CYR1/CDC35, encoding adenylate cyclase, and that it contained an A to T substitution at position 5627. This corresponds to a K1876M substitution near the end of the catalytic domain in adenylate cyclase. Introduction of the A5627T mutation into the CYR1 gene of a W303-1A wild-type strain largely eliminated glucose- and acidification-induced cAMP signalling and also the transient cAMP increase that occurs in the lag phase of growth. Hence, lysine1876 of adenylate cyclase is essential for cAMP responses in vivo. Lysine1876 is conserved in Schizosaccharomyces pombe adenylate cyclase. Mn2+-dependent adenylate cyclase activity in isolated plasma membranes of the cyr1met1876 (lcr1) strain was similar to that in the isogenic wild-type strain, but GTP/Mg2+-dependent activity was strongly reduced, consistent with the absence of signalling through adenylate cyclase in vivo. Glucose-induced activation of trehalase was reduced and mobilization of trehalose and glycogen and loss of stress resistance were delayed in the cyr1met1876 (lcr1) mutant. During exponential growth on glucose, there was little effect on these protein kinase A (PKA) targets, indicating that the importance of glucose-induced cAMP signalling is restricted to the transition from gluconeogenic/respiratory to fermentative growth. Inhibition of growth by weak acids was reduced, consistent with prevention of the intracellular acidification effect on cAMP by the cyr1met1876 (lcr1) mutation. The mutation partially suppressed the effect of RAS2val19 and GPA2val132 on several PKA targets. These results demonstrate the usefulness of the cyr1met1876 (lcr1) mutation for epistasis studies on the signalling function of the cAMP pathway.  相似文献   

18.
The relationships of the changes of cAMP and cGMP concentrations in E. coli varied as a function of experimental conditions. (1) Cells starved for carbon source for a short time period had high cAMP and low cGMP concentrations. Addition of carbon source (succinate, glucose or α-methyl glucoside) led to a decrease in cAMP and an increase in cGMP (bi-directional change). (2) Washed cells starved for glucose for long time periods had low cAMP levels which did not change on glucose addition. Addition of succinate or glucose to such cells led to a transient increase in cGMP levels (uncoupled change). The cGMP concentration peaked at 15 minutes or 1 hour after glucose or succinate addition, respectively. (3) Sham shift-up experiments (addition of α-methyl glucoside to cultures growing in succinate) in E. coli 1100 and CA 8000 showed decreases in cGMP levels in both strains; however, cAMP levels increased in the former (bi-directional change) and decreased in the latter (unidirectional change).  相似文献   

19.
Single-channel recordings were used to study the modulation of stretch-activated channels (SACs) by intracellular adenosine nucleotides in identified leech neurons. These channels exhibited two activity modes, spike-like (SL) and multiconductance (MC), displaying different polymodal activation. In the absence of mechanical stimulation, internal perfusion of excised patches with ATP induced robust and reversible activation of the MC but not of the SL mode. The ATP effect on channel activity was dose-dependent within a range of 1 μM-1 mM and was induced at different values of intracellular pH and Ca2+. The non-hydrolyzable ATP analog AMP-PNP, ATP without Mg2+ or ADP also effectively enhanced MC activity. Adenosine mimicked the effect of its nucleotides. At negative membrane potentials, both ATP and adenosine activated the channel. Moreover, ATP but not adenosine induced a flickering block. Addition of cAMP during maximal ATP activation completely and reversibly inhibited the channel, with activation and deactivation times of minutes. However, cAMP alone only induced a weak and rapid channel activation, without inhibitory effects. The expression of these channels in the growth cones of leech neurons, their permeability to Ca2+ and their sensitivity to intracellular cAMP are consistent with a role in the Ca2+ oscillations associated with cell growth.  相似文献   

20.
Uncouplers of oxidative phosphorylation increased the speed of substrate oxidation and ATP hydrolysis and raised cAMP induced neuron membrane current. Different inhibitors decreased it. Both effects support the hypothesis that a signal of intracellular injected cAMP spreads to the neuron membrane as a mechanical signal. This signal propagated to the membrane along microtubules which according to this hypothesis serve as a sound generator with metabolic heat pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号