首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collection of bacterial antibiotic resistance strains isolated from arctic permafrost subsoil sediments of various age and genesis was created. The collection included approximately 100 strains of Gram-positive (Firmicutes, Arthrobacter) and Gram-negative bacteria (Bacteroidetes, gamma-Proteobacteria, and alpha-Proteobacteria) resistant to aminoglycoside antibiotics (gentamycin, kanamycin, and streptomycin), chloramphenicol and tetracycline. Antibiotic resistance spectra were shown to differ in Gram-positive and Gram-negative bacteria. Multidrug resistance strains were found for the first time in ancient bacteria. In studies of the molecular nature of determinants for streptomycin resistance, determinants of the two types were detected: strA-strB genes coding for aminoglycoside phosphotransferases and genes aadA encoding aminoglycoside adenylyltransferases. These genes proved to be highly homologous to those of contemporary bacteria.  相似文献   

2.
Potential carbon release from permafrost soils of Northeastern Siberia   总被引:3,自引:0,他引:3  
Permafrost soils are an important reservoir of carbon (C) in boreal and arctic ecosystems. Rising global temperature is expected to enhance decomposition of organic matter frozen in permafrost, and may cause positive feedback to warming as CO2 is released to the atmosphere. Significant amounts of organic matter remain frozen in thick mineral soil (loess) deposits in northeastern Siberia, but the quantity and lability of this deep organic C is poorly known. Soils from four tundra and boreal forest locations in northeastern Siberia that have been continuously frozen since the Pleistocene were incubated at controlled temperatures (5, 10 and 15°C) to determine their potential to release C to the atmosphere when thawed. Across all sites, CO2 with radiocarbon (14C) ages ranging between~21 and 24 ka bp was respired when these permafrost soils were thawed. The amount of C released in the first several months was strongly correlated to C concentration in the bulk soil in the different sites, and this correlation remained the same for fluxes up to 1 year later. Fluxes were initially strongly related to temperature with a mean Q10 value of 1.9±0.3 across all sites, and later were unrelated to temperature but still correlated with bulk soil C concentration. Modeled inversions of Δ14CO2 values in respiration CO2 and soil C components revealed mean contribution of 70% and 26% from dissolved organic C to respiration CO2 in case of two permafrost soils, while organic matter fragments dominated respiration (mean 68%) from a surface mineral soil that served as modern reference sample. Our results suggest that if 10% of the total Siberian permafrost C pool was thawed to a temperature of 5°C, about 1 Pg C will be initially released from labile C pools, followed by respiration of~40 Pg C to the atmosphere over a period of four decades.  相似文献   

3.
One hundred and five strains isolated from aquifer sediments andEscherichia coli ML30S were tested for their ability to reduce manganese oxides. Eighty-two strains, includingE. coli, reduced manganese. In most cases the bacterial activity decreased the pH and Eh below 6.75 and 350 mV, respectively, enhancing a spontaneous and nonspecific reduction of manganese. However, for 12 strains the reduction was specifically catalyzed by bacteria; the high pH and Eh values would not permit a spontaneous reduction of manganese. Some of the most active strains were identified as genera common in soils and waters, i.e.,Pseudomonas, Bacillus, Corynebacterium, andAcinetobacter. Two strains were studied in detail. One of the strains, identified asPseudomonas fluorescens, required contact between the cells and the manganese oxides for reduction to occur. The reduction was inhibited by 15 mM of sodium azide. The other strain, identified asAcinetobacter johnsonii, catalyzed manganese reduction by an inductive and dialyzable substance which was excreted by the bacteria. The mechanism involved has not been previously demonstrated.  相似文献   

4.
Mechanisms of bacterial biocide and antibiotic resistance   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
Unfortunately for mankind, it is very likely that the antibiotic resistance problem we have generated during the last 60 years due to the extensive use and misuse of antibiotics is here to stay for the foreseeable future. This view is based on theoretical arguments, mathematical modeling, experiments and clinical interventions, suggesting that even if we could reduce antibiotic use, resistant clones would remain persistent and only slowly (if at all) be outcompeted by their susceptible relatives. In this review, we discuss the multitude of mechanisms and processes that are involved in causing the persistence of chromosomal and plasmid-borne resistance determinants and how we might use them to our advantage to increase the likelihood of reversing the problem. Of particular interest is the recent demonstration that a very low antibiotic concentration can be enriching for resistant bacteria and the implication that antibiotic release into the environment could contribute to the selection for resistance. Several mechanisms are contributing to the stability of antibiotic resistance in bacterial populations and even if antibiotic use is reduced it is likely that most resistance mechanisms will persist for considerable times.  相似文献   

7.
Resistance to antibiotics is increasingly commonplace amongst important human pathogens. Although the mechanism(s) of resistance vary from agent to agent they typically involve one or more of: alteration of the drug target in the bacterial cell, enzymatic modification or destruction of the drug itself, or limitation of drug accumulation as a result of drug exclusion or active drug efflux. While most of these are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide resistance to a broad range of structurally unrelated antimicrobials--so-called multidrug efflux systems. Resistance to biocides is less common and likely reflects the multiplicity of targets within the cell as well as the general lack of known detoxifying enzymes. Resistance typically results from cellular changes that impact on biocide accumulation, including cell envelope changes that limit uptake, or expression of efflux mechanisms. Still, target site mutations leading to biocide resistance, though rare, are known. Intriguingly, many multidrug efflux systems also accommodate biocides (e.g. triclosan) such that strains expressing these are both antibiotic- and biocide-resistant. Indeed, concern has been expressed regarding the potential for agents such as triclosan to select for strains resistant to multiple clinically-relevant antibiotics. Some of the better characterized examples of such multidrug efflux systems can be found in the opportunistic pathogen Pseudomonas aeruginosa where they play an important role in the noted intrinsic and acquired resistance of this organism to antibiotics and triclosan. These tripartite pumps include an integral inner membrane drug-proton antiporter, an outer membrane- and periplasm-spanning channel-forming protein and a periplasmic link protein that joins these two. Expression of efflux genes is governed minimally by the product of a linked regulatory gene that is in most cases the target for mutation in multidrug resistant strains hyperexpressing these efflux systems. Issues for consideration include the natural function of these efflux systems and the therapeutic potential of targeting these systems in combating acquired multidrug resistance.  相似文献   

8.
Novel strains of rhamnolipid-producing bacteria were isolated from soils at a biodiesel facility on the basis of their ability to grow on glycerol as a sole carbon source. Strains were identified as Acinetobacter calcoaceticus , Enterobacter asburiae , Enterobacter hormaechei , Pantoea stewartii , and Pseudomonas aeruginosa . The strains of the former five species were found to produce rhamnolipids in quantities the same as, or similar to, coisolated strains of P. aeruginosa . Measurements of surface tension revealed that that emulsifying properties of these strains were similar to levels displayed by rhamnolipids produced by P. aeruginosa . Results of matrix-assisted laser desorption/ionization time-of-flight MS analyses revealed that the predominant compounds made by all strains were C10–C10 mono- and dirhamnolipids. Notably, E. hormaechei and one strain of A. calcoaceticus produced rhamnolipids in amounts similar to the pseudomonads. As all strains examined were from the same taxonomic class of Proteobacteria , further examination of this group may reveal many additional species not previously known to produce rhamnolipids in addition to novel strains of species currently known to produce rhamnolipids.  相似文献   

9.
红树林湿地烷烃降解菌的分离筛选   总被引:1,自引:0,他引:1  
李玫  廖宝文 《生态科学》2013,32(1):40-43
从受石油污染的红树林湿地土样中分离筛选对烷烃具较高降解能力的细菌菌株, 以期应用于被石油污染滨海湿地的生物修复。采用富集培养方法, 富集、分离和筛选烷烃降解菌;观察各菌落及菌体形态特征;测试菌株Z2的生理生化特征, 并用16S rDNA序列分析方法进行该菌种鉴定。分离筛选得到Z1、Z2和Z3这3个能以正十六烷为唯一碳源生长的菌株, 其降解率依次为63.4%、82.5%和78.3%, 其中菌株Z2的降解率最高。经过形态学观察、生理生化特性实验和16S rDNA序列分析鉴定, 菌株Z2为不动杆菌(Acinetobacter sp.)。  相似文献   

10.
Although ancient DNA from sediments (sedaDNA) has been used to investigate past ecosystems, the approach has never been directly compared with the traditional methods of pollen and macrofossil analysis. We conducted a comparative survey of 18 ancient permafrost samples spanning the Late Pleistocene (46-12.5 thousand years ago), from the Taymyr Peninsula in northern Siberia. The results show that pollen, macrofossils and sedaDNA are complementary rather than overlapping and, in combination, reveal more detailed information on plant palaeocommunities than can be achieved by each individual approach. SedaDNA and macrofossils share greater overlap in plant identifications than with pollen, suggesting that sedaDNA is local in origin. These two proxies also permit identification to lower taxonomic levels than pollen, enabling investigation into temporal changes in species composition and the determination of indicator species to describe environmental changes. Combining data from all three proxies reveals an area continually dominated by a mosaic vegetation of tundra-steppe, pioneer and wet-indicator plants. Such vegetational stability is unexpected, given the severe climate changes taking place in the Northern Hemisphere during this time, with changes in average annual temperatures of >22 °C. This may explain the abundance of ice-age mammals such as horse and bison in Taymyr Peninsula during the Pleistocene and why it acted as a refugium for the last mainland woolly mammoth. Our finding reveals the benefits of combining sedaDNA, pollen and macrofossil for palaeovegetational reconstruction and adds to the increasing evidence suggesting large areas of the Northern Hemisphere remained ecologically stable during the Late Pleistocene.  相似文献   

11.
Transfer of Cefamandole resistance was demonstrated from strains of Citrobacter freundii as well as from individual strains of Enterobacter cloacae, Acinetobacter anitratus and Klebsiella pneumoniae isolated from patients in two newborn units. In Citrobacter freundii, Cefamandole resistance was transferred always with Cephalotin resistance as well as with a TEM-like beta lactamase (conferring resistance to Ampicillin, Carbenicillin and Azlocillin). Citrobacter freundii strains from Hospital I were completely susceptible to gentamicin, while strains of other species, resistant to Cefamandole plus Cephalotin, were resistant to Gentamicin as well, and transferred this resistance, too. In one Enterobacter cloacae strain from Hospital I, Cefamandole resistance could be separated from resistance to Cephalotin, but only in clones selected with gentamicin and not with any of the cephalosporins. Acinetobacter anitratus strain was also resistant to Cefotaxime, but did not transfer this resistance. It might be concluded that special nosocomial bacteria may carry plasmids conferring a transferable type of resistance to Cefamandole together with resistance to classical cephalosporines. Second cycle of transfers, i.e. between two variants of E. coli K-12 strains confirmed the contransferability of Cefamandole and Cephalotin resistance.  相似文献   

12.
Progress in DNA technology, analytical methods and computational tools is leading to new developments in synthetic biology and metabolic engineering, enabling new ways to produce molecules of industrial and therapeutic interest. Here, we review recent progress in both antibiotic production and strategies to counteract bacterial resistance to antibiotics. Advances in sequencing and cloning are increasingly enabling the characterization of antibiotic biosynthesis pathways, and new systematic methods for de novo biosynthetic pathway prediction are allowing the exploration of the metabolic chemical space beyond metabolic engineering. Moreover, we survey the computer-assisted design of modular assembly lines in polyketide synthases and non-ribosomal peptide synthases for the development of tailor-made antibiotics. Nowadays, production of novel antibiotic can be tranferred into any chosen chassis by optimizing a host factory through specific strain modifications. These advances in metabolic engineering and synthetic biology are leading to novel strategies for engineering antimicrobial agents with desired specificities.  相似文献   

13.
14.
不同土壤类型钾矿物分解细菌资源调查和高效稳定释钾、促生细菌的筛选鉴定有助于丰富微生物资源库,发掘和利用钾矿物分解细菌以及探究矿物生物风化机理等。作者采用以钾长石为唯一钾源的选择性细菌培养基, 从山东地区不同土壤和不同植物根际土壤中分离纯化了23株生长势良好的钾矿物分解细菌, 通过测定细菌代谢产物IAA和铁载体,研究其产生促生物质的能力, 通过摇瓶试验筛选高效释钾菌株, 采用16S rDNA限制性酶切多态性分析(amplified rDNA restriction analysis, ARDRA)方法研究了钾矿物分解细菌的遗传多样性, 根据16S rDNA同源性对高效释钾菌株进行了鉴定。结果表明, 供试菌株均产吲哚乙酸或其衍生物, 43.5%的分离菌株产极高量铁载体。ARDRA结果表明供试菌株在60%相似性水平上可分为11个基因型, 同一类型土壤上不同作物根际或不同类型土壤上同一作物根际的钾矿物分解细菌存在明显的遗传差异。摇瓶试验结果表明供试菌株中具有较显著释钾能力的菌株占17%, 39%的供试菌株无释钾能力。筛选到2株高效释钾菌株AFM2、AC2, 分别使溶液中钾含量增加了29.8%和25.4%。16S rDNA同源性分析表明菌株AC2、AHZ1与Bacillus mucilaginosus聚为一群, 该群与包含菌株AZH4的Paenibacillus sp.中的种聚为一大发育分支, 该分支在细菌分类地位上隶属于Firmicutes; 菌株AFM2与Rhizobium sp. 和Agrobacterium tumefaciens聚为另一大发育分支, 该分支在细菌分类地位上隶属于Alphaproteobacteria。  相似文献   

15.
三七是我国的名贵药材,但由于连作障碍发生严重,因此土壤中自毒物质的积累成为导致三七连作障碍发生的主要原因之一。生物降解土壤中的自毒物质是缓解连作障碍的有效措施,为筛选并利用降解菌使土壤中皂苷类自毒物质快速消减,该研究以皂苷类自毒物质为筛选靶标,采用富集和驯化策略,从连作三七根际土壤中分离、筛选三七皂苷类自毒物质降解细菌,结合16S rRNA基因测序对高活性菌株进行分类鉴定,并对筛选得到的高活性菌株SC3的降解特性进行了研究。结果表明:(1)从三七根际土壤中成功分离出8株潜在自毒物质降解细菌,初筛评价结果显示SC3菌株对三七总皂苷的降解率最高,达87.42%。(2)通过16S rRNA基因序列分析,编号SC3的高活性菌株被鉴定为寡养单胞菌属(Stenotrophomonas)细菌。(3)在相同培养条件下,菌株SC3对单体皂苷Rb1的降解效果强于对Rg1的降解。(4)在液体培养条件下,底物浓度、接种量和培养温度均会显著影响SC3菌株对单体皂苷Rb1的降解效果。综上表明,采用富集和驯化策略可以有效筛选自毒物质降解细菌,SC3菌株具有消除连作土壤中皂苷类自毒物质的潜力。该研究结果为连作土壤修复提供了生物资源,并为今后深入研究皂苷降解机制提供了理论依据。  相似文献   

16.
Mercury-resistant bacteria were isolated from permafrost sediments of Kolyma lowland and Canada existing over five thousand to two million years. Their content was shown to vary within the range 0.001-2.9% and to depend on the amount of mercury in sampling sites (coefficient of correlation 0.75). A collection of mercury-resistant bacterial strains was created. In this collection, various representatives of both Gram-positive bacteria (Bacillus, Exiguobacterium, Micrococcus, Arthrobacter) and Gram-negative bacteria (Pseudomonas, Acinetobacter, Plesiomonas, Myxobacteriales) were identified. Most resistant bacteria were found to contain determinants homologous to mer-operons of contemporary bacteria. The isolated strains of paleobacteria are proposed to be used for a comparative structural study of contemporary and ancient plasmids and transposons carrying mercury resistance determinants.  相似文献   

17.
Transmissible multiple resistance to tetracycline, ampicillin and streptomycin was found to be associated with transfer of the larger of the two plasmids (˜ 80 and ˜ 45 kbp) present in a group of tetracycline-resistant Escherichia coli strains isolated from the rumen of sheep. A second group of rumen tetR strains, which differed in the ability to utilize several sugars, showed non-transmissible resistances to tetracycline and streptomycin.  相似文献   

18.
Penicillins are widespread in nature and lethal to growing bacteria. Because of the severe threat posed by these antibiotics, bacteria have evolved a wide variety of strategies for combating them. Here, we describe one unusual strategy that involves the activity of a catalytic carbohydrate. We show that the cyclic oligosaccharide, β-cyclodextrin (βCD), can hydrolyze, and thereby inactivate, penicillin in vivo. Moreover, we demonstrate that this catalytic activity contributes to the antibiotic resistance of a bacterium that synthesizes this oligosaccharide in the laboratory. Taken together, these data not only expand our understanding of the biochemistry of penicillin resistance, but also provide the first demonstration of natural carbohydrate-mediated catalysis in a living system. Paul de Figueiredo, Becky Terra and Jasbir Kaur Anand have contributed equally to this work.  相似文献   

19.
Multiple drug resistance can form in bacteria by functioning the membrane transport systems, responsible for release of antibacterial compounds from the cell into the environment. These transport mechanisms activated in the majority of cases by energy of proton transmembrane gradient are presented by solitary membrane transporting proteins and by functionally related transporter groups, periplasma proteins, and external membrane porines. Many bacterial drug transporters can bind and transfer a number of structurally heterogeneous substrates. Drug transporters known today have different origin and primary physiological functions. The genetic system of transporter type drug resistance is as a rule characterized by a cluster structure and related to mobile genetic elements. Transport mechanisms of drug resistance create an extra adaptation potential of microorganisms under conditions of selective pressure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号