首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guard cell responses to light are mediated by guard cell chlorophyll and by a specific blue light photoreceptor. Gas exchange and epidermal peel techniques were employed to investigate these responses in the facultative Crassulacean acid metabolism (CAM) species, Portulacaria afra (L.) Jacq. In P. afra individuals performing C3 metabolism, red light stimulated an increase in leaf conductance in intact leaves and stomatal opening in isolated epidermal peels, indicating the presence in guard cells of the chlorophyll-mediated response to light. Under a background of continuous red illumination, conductance exhibited transient increases following pulses of blue but not red light, indicating that the specific stomatal response to blue light was also operative. In contrast, in CAM individuals, conductance in gas exchange experiments and stomatal opening in epidermal peel experiments were not stimulated by red light. In CAM plants, conductance did not increase following blue light pulses administered over a range of temperatures, vapor pressure differences (VPD), ambient CO2 concentrations and background red light intensities. These results indicate that P. afra does possess typical guard cell responses to light when performing C3 metabolism. The metabolic pathways mediating these responses are either lost or inhibited when CAM is induced.  相似文献   

2.
Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels.  相似文献   

3.
Leaves from Paphiopedilum sp. (Orchidaceae) having achlorophyllous stomata, show reduced levels of stomatal conductance when irradiated with red light, as compared with either the related, chlorophyllous genus Phragmipedium or with their response to blue light. These reduced levels of stomatal conductance, and the failure of isolated Paphiopedilum stomata to open under red irradiation indicates that the small stomatal response measured in the intact leaf under red light is indirect.

The overall low levels of stomatal conductance observed in Paphiopedilum leaves under most growing conditions and their capacity to increase stomatal conductance in response to blue light suggested that growth and carbon gain in Paphiopedilum could be enhanced in a blue light-enriched environment. To test that hypothesis, plants of Paphiopedilum acmodontum were grown in controlled growth chambers under daylight fluorescent light, with or without blue light supplementation. Total photosynthetic photon flux density was kept constant in both conditions. Blue light enrichment resulted in significantly higher growth rates—of up to 77%—over a 3 to 4 week growing period, with all evidence indicating that the blue light effect was a stomatal response. Manipulations of stomatal properties aimed at long-term carbon gains could have agronomic applications.

  相似文献   

4.
Low intensity (0.015 millimole per square meter per second) blue light applied to leaves of Hedera helix under a high intensity red light background (0.50 millimole per square meter per second red light) induced a specific stomatal opening response, with rapid kinetics comparable to those previously reported for stomata with `grass type' morphology. The response of stomatal conductance to blue light showed a transient `overshoot' behavior at high vapor pressure difference (2.25 ± 0.15 kiloPascals), but not at low vapor pressure difference (VPD) (0.90 ± 0.10 kilo-Pascal). The blue light-induced conductance increase was accompanied by an increase in net photosynthetic carbon assimilation, mediated by an increase in the intercellular concentration of carbon dioxide. Values of assimilation once the blue light-stimulated conductance increase reached steady state were less than those at the peak of the overshoot, but the ratios of assimilation to transpiration (A/E) and blue light-stimulated ΔAE were greater during the steady-state response than during the overshoot. These results indicate that significant stomatal limitation of assimilation can occur, but that this limitation may improve water use efficiency under high VPD conditions. Under high intensity red light, the decline in A/E associated with an increase in VPD was minimized when conductance was stimulated by additional low intensity blue light. This effect indicates that the blue light response of stomata may be important in H. helix for the optimization of water use efficiency under natural conditions of high irradiance and VPD.  相似文献   

5.
Abstract. The response of stomatal conductance to broadband blue and red light was measured in whole shoots of Scots pine and Sitka spruce, two species which have low stomatal sensitivity to CO2. In Scots pine, blue light was more than three times more effective than red light (on an incident quantum basis) in opening stomata, particularly at low quantum flux densities (<100μmiol m−2 s−1). However, the apparent quantum yield of net CO2 assimilation rate in blue light was only half that in red light. The contrasting effects of red and blue light on conductance and assimilation led to higher intercellular CO2 concentrations (Ci) in blue light (up to 100 μmol mol−1 higher) than in red light. Similar results were obtained with Sitka spruce shoots, though differences in the effectiveness of red and blue light were less marked. In both species, both red and blue light increased conductance in normal and CO2-free air, indicating that neither red nor blue light exert effects through changes in Ci or mesophyll assimilation. However, decreases in Ci caused increases in conductance in both red and blue light, suggesting that these direct effects of light are not wholly independent of CO2.  相似文献   

6.
Zeiger E  Field C 《Plant physiology》1982,70(2):370-375
The photocontrol of the functional coupling between photosynthesis and stomatal conductance in the leaf was investigated in gas exchange experiments using monochromatic light provided by lasers. Net photosynthesis and stomatal conductance were measured in attached leaves of Malva parviflora L. as a function of photon irradiance at 457.9 and 640.0 nanometers.

Photosynthetic rates and quantum yields of photosynthesis were higher under red light than under blue, on an absorbed or incident basis.

Stomatal conductance was higher under blue than under red light at all intensities. Based on a calculated apparent photon efficiency of conductance, blue and red light had similar effects on conductance at intensities higher than 0.02 millimoles per square meter per second, but blue light was several-fold more efficient at very low photon irradiances. Red light had no effect on conductance at photon irradiances below 0.02 millimoles per square meter per second. These observations support the hypothesis that stomatal conductance is modulated by two photosystems: a blue light-dependent one, driving stomatal opening at low light intensities and a photosynthetically active radiation (PAR)-dependent one operating at higher irradiances.

When low intensity blue light was used to illuminate a leaf already irradiated with high intensity, 640 nanometers light, the leaf exhibited substantial increases in stomatal conductance. Net photosynthesis changed only slightly. Additional far-red light increased net photosynthesis without affecting stomatal conductance. These observations indicate that under conditions where the PAR-dependent system is driven by high intensity red light, the blue light-dependent system has an additive effect on stomatal conductance.

The wavelength dependence of photosynthesis and stomatal conductance demonstrates that these processes are not obligatorily coupled and can be controlled by light, independent of prevailing levels of intercellular CO2. The blue light-dependent system in the guard cells may function as a specific light sensor while the PAR-dependent system supplies a CO2-modulated energy source providing functional coupling between the guard cells and the photosynthesizing mesophyll.

  相似文献   

7.
Pima S‐6 ( Gossypium barbadense L.) is a modern line with high stomatal conductance, while B368 is a primitive cotton with low conductance. The blue light sensitivity of adaxial guard cells, probed as the blue light‐dependent enhancement of the red light‐induced chlorophyll a fluorescence quenching, was investigated in these two cotton lines with contrasting stomatal conductance. Adaxial guard cells isolated from Pima S‐6 cotton plants had a significantly higher carotenoid content and a higher blue light sensitivity than those isolated from B368 plants. In a growth chamber‐grown F2 population of a cross between these two lines, adaxial stomatal conductances of individual plants segregated over a range exceeding the average conductances of the parents. Carotenoid content and the blue light sensitivity of adaxial guard cells also segregated. The concentrations of xanthophylls and β‐carotene in the adaxial guard cells were poorly correlated with the blue light response, except for zeaxanthin. The co‐segregation of stomatal conductance and blue light sensitivity suggested that the stomatal response to blue light may play a role in the regulation of stomatal conductance in the intact leaf. Zeaxanthin content and blue light sensitivity also co‐segregated, suggesting that both parameters are under genetic control. The co‐segregation of zeaxanthin content, blue light sensitivity and stomatal conductance provides further evidence for a role of zeaxanthin in the blue light photoreception of guard cells.  相似文献   

8.
The stomatal conductance response to low intensity blue light was studied in wheat seedlings ( Triticum aestivum L. cv. Starke II, Weibull) under red background illumination. Reciprocity was shown to be valid for illumination times from 10 s up to about 2 min. The action spectrum, constructed from fluence rate response curves, showed a maximum peak at 445–450 nm, another peak at 470 nm, a slight shoulder at 420 nm and a plateau between 370–400 nm. The relationship with action spectra for other blue light responses is discussed. The blue light response of wheat stomata did not exhibit action dichroism (the direction of the electrical vector of polarized blue light did not influence the response of the guard cells).  相似文献   

9.
Long-term effects of light quality on leaf hydraulic conductance (K(leaf)) and stomatal conductance (g(s)) were studied in cucumber, and their joint impact on leaf photosynthesis in response to osmotic-induced water stress was assessed. Plants were grown under low intensity monochromatic red (R, 640 nm), blue (B, 420 nm) or combined red and blue (R:B, 70:30) light. K(leaf) and g(s) were much lower in leaves that developed without blue light. Differences in g(s) were caused by differences in stomatal aperture and stomatal density, of which the latter was largely due to differences in epidermal cell size and hardly due to stomatal development. Net photosynthesis (A(N)) was lowest in R-, intermediate in B-, and highest in RB- grown leaves. The low A(N) in R-grown leaves correlated with a low leaf internal CO(2) concentration and reduced PSII operating efficiency. In response to osmotic stress, all leaves showed similar degrees of stomatal closure, but the reduction in A(N) was larger in R- than in B- and RB-grown leaves. This was probably due to damage of the photosynthetic apparatus, which only occurred in R-grown leaves. The present study shows the co-ordination of K(leaf) and g(s) across different light qualities, while the presence of blue in the light spectrum seems to drive both K(leaf) and g(s) towards high, sun-type leaf values, as was previously reported for maximal photosynthetic capacity and leaf morphology. The present results suggest the involvement of blue light receptors in the usually harmonized development of leaf characteristics related to water relations and photosynthesis under different light environments.  相似文献   

10.
Stomatal responses to light of Arabidopsis thaliana wild-type plants and mutant plants deficient in starch (phosphoglucomutase deficient) were compared in gas exchange experiments. Stomatal density, size and ultrastructure were identical for the two phenotypes, but no starch was observed in guard cells of the mutant plants whatever the time of day. The overall extent of changes in stomatal conductance during 14 h light–10 h dark cycles was similar for the two phenotypes. However, the slow endogenous stomatal opening occurring in darkness in the wild type was not observed in the mutant plants. Stomata in the mutant plants responded much more slowly to blue light (70 μmol m?2 s?1) though the response to red light (250 μmol m?2 s?1) was similar to that of wild-type plants. In paradermal sections, stomatal responses to red light (300 μmol m?2 s?1) were weak for wild-type plants as well as for mutant plants. Stomatal opening was greater under low blue light (75 μmol m?2 s?1) than under red light for the two genotypes. However, in mutant plants, a high chloride concentration (50 mol m?3) was necessary to achieve the same stomatal aperture as observed for the wild-type plants. These results suggest that starch metabolism, via the synthesis of a counter-ion to potassium (probably malate), is required for full stomatal response to blue light but is not involved in the stomatal response to red light.  相似文献   

11.
Circadian Rhythms in Stomatal Responsiveness to Red and Blue Light   总被引:4,自引:0,他引:4       下载免费PDF全文
Stomata of many plants have circadian rhythms in responsiveness to environmental cues as well as circadian rhythms in aperture. Stomatal responses to red light and blue light are mediated by photosynthetic photoreceptors; responses to blue light are additionally controlled by a specific blue-light photoreceptor. This paper describes circadian rhythmic aspects of stomatal responsiveness to red and blue light in Vicia faba. Plants were exposed to a repeated light:dark regime of 1.5:2.5 h for a total of 48 h, and because the plants could not entrain to this short light:dark cycle, circadian rhythms were able to "free run" as if in continuous light. The rhythm in the stomatal conductance established during the 1.5-h light periods was caused both by a rhythm in sensitivity to light and by a rhythm in the stomatal conductance established during the preceding 2.5-h dark periods. Both rhythms peaked during the middle of the subjective day. Although the stomatal response to blue light is greater than the response to red light at all times of day, there was no discernible difference in period, phase, or amplitude of the rhythm in sensitivity to the two light qualities. We observed no circadian rhythmicity in net carbon assimilation with the 1.5:2.5 h light regime for either red or blue light. In continuous white light, small rhythmic changes in photosynthetic assimilation were observed, but at relatively high light levels, and these appeared to be attributable largely to changes in internal CO2 availability governed by stomatal conductance.  相似文献   

12.
Reversal of blue light-stimulated stomatal opening by green light   总被引:3,自引:0,他引:3  
Blue light-stimulated stomatal opening in detached epidermis of Vicia faba is reversed by green light. A 30 s green light pulse eliminated the transient opening stimulated by an immediately preceding blue light pulse. Opening was restored by a subsequent blue light pulse. An initial green light pulse did not alter the response to a subsequent blue light pulse. Reversal also occurred under continuous illumination, with or without a saturating red light background. The magnitude of the green light reversal depended on fluence rate, with full reversal observed at a green light fluence rate twice that of the blue light. Continuous green light given alone stimulated a slight stomatal opening, and had no effect on red light-stimulated opening. An action spectrum for the green light effect showed a maximum at 540 nm and minor peaks at 490 and 580 nm. This spectrum is similar to the action spectrum for blue light-stimulated stomatal opening, red-shifted by about 90 nm. The carotenoid zeaxanthin has been implicated as a photoreceptor for the stomatal blue light response. Blue/green reversibility might be explained by a pair of interconvertible zeaxanthin isomers, one absorbing in the blue and the other in the green, with the green absorbing form being the physiologically active one.  相似文献   

13.
The Arabidopsis mutant npq1, which cannot accumulate zeaxanthin because of a defective violaxanthin deepoxidase, was used to investigate the role of zeaxanthin in the stomatal response to blue light. Neither dark-adapted nor light-treated guard cells or mesophyll cells of the npq1 mutant contained detectable zeaxanthin. In contrast, wild-type guard cells had a significant zeaxanthin content in the dark and accumulated large amounts of zeaxanthin when illuminated. The well-documented red light enhancement of blue light-stimulated stomatal opening, in which increasing fluence rates of background red light result in increased response to blue light, was used to probe the specific blue light response of Arabidopsis stomata. Stomata from the npq1 mutant did not have a specific blue light response under all fluence rates of background red light tested. On the other hand, stomata from leaves of hy4 (cry 1), an Arabidopsis mutant lacking blue light-dependent inhibition of hypocotyl elongation, had a typical enhancement of the blue light response by background red light. The lack of a specific blue light response in the zeaxanthinless npq1 mutant provides genetic evidence for the role of zeaxanthin as a blue light photoreceptor in guard cells.  相似文献   

14.
Blue light induced stomatal opening has been studied by applying a short pulse (~5 to 60 s) of blue light to a background of saturating photosynthetic red photons, but little is known about steady-state stomatal responses. Here we report stomatal responses to blue light at high and low CO2 concentrations. Steady-state stomatal conductance (gs) of C3 plants increased asymptotically with increasing blue light to a maximum at 20% blue (120 μmol m−2 s−1). This response was consistent from 200 to 800 μmol mol−1 atmospheric CO2 (Ca). In contrast, blue light induced only a transient stomatal opening (~5 min) in C4 species above a Ca of 400 μmol mol−1. Steady-state gs of C4 plants generally decreased with increasing blue intensity. The net photosynthetic rate of all species decreased above 20% blue because blue photons have lower quantum yield (moles carbon fixed per mole photons absorbed) than red photons. Our findings indicate that photosynthesis, rather than a blue light signal, plays a dominant role in stomatal regulation in C4 species. Additionally, we found that blue light affected only stomata on the illuminated side of the leaf. Contrary to widely held belief, the blue light-induced stomatal opening minimally enhanced photosynthesis and consistently decreased water use efficiency.  相似文献   

15.
To determine the contribution of photosynthesis on stomatal conductance, we contrasted the stomatal red light response of wild-type tobacco (Nicotiana tabacum 'W38') with that of plants impaired in photosynthesis by antisense reductions in the content of either cytochrome b(6)f complex (anti-b/f plants) or Rubisco (anti-SSU plants). Both transgenic genotypes showed a lowered content of the antisense target proteins in guard cells as well as in the mesophyll. In the anti-b/f plants, CO(2) assimilation rates were proportional to leaf cytochrome b(6)f content, but there was little effect on stomatal conductance and the rate of stomatal opening. To compare the relationship between photosynthesis and stomatal conductance, wild-type plants and anti-SSU plants were grown at 30 and 300 micromol photon m(-2) s(-1) irradiance (low light and medium light [ML], respectively). Growth in ML increased CO(2) assimilation rates and stomatal conductance in both genotypes. Despite the significantly lower CO(2) assimilation rate in the anti-SSU plants, the differences in stomatal conductance between the genotypes were nonsignificant at either growth irradiance. Irrespective of plant genotype, stomatal density in the two leaf surfaces was 2-fold higher in ML-grown plants than in low-light-grown plants and conductance normalized to stomatal density was unaffected by growth irradiance. We conclude that the red light response of stomatal conductance is independent of the concurrent photosynthetic rate of the guard cells or of that of the underlying mesophyll. Furthermore, we suggest that the correlation of photosynthetic capacity and stomatal conductance observed under different light environments is caused by signals largely independent of photosynthesis.  相似文献   

16.
The effects of environmental parameters on the blue light response of stomata were studied by quantifying transient increases in stomatal conductance in Commelina communis following 15 seconds by 0.100 millimole per square meter per second pulses of blue light. Because conductance increases were not observed following red light pulses of the same or greater (30 seconds by 0.200 millimole per square meter per second) fluences, the responses observed could be reliably attributed to the specific blue light response of the guard cells, rather than to guard cell chlorophyll. In both Paphiopedilum harrisianum, which lacks guard cell chloroplasts, and Commelina, the blue light response was enhanced by 0.263 millimole per square meter per second continuous background red light. Thus, the blue light response and its enhancement do not require energy derived from red-light-driven photophosphorylation by the guard cell chloroplasts. In Commelina, reduction of the intercellular concentration of CO2 by manipulation of ambient CO2 concentrations resulted in an enhanced blue light response. In both Commelina and Paphiopedilum, the blue light response was decreased by an increased vapor pressure difference. The magnitude of blue-light-specific stomatal opening thus appears to be sensitive to environmental conditions that affect the carbon and water status of the plant.  相似文献   

17.
Effects of CO2 on stomatal movements of Commelina communis L. were studied with plants, epidermal strips and guard cell protoplasts. With plants, the stomatal response induced by a blue light pulse was studied for different ambient CO2 concentration ranging from CO2-deprived air to 100 Pa in darkness or under red light. It was observed that the blue light response could be obtained not only under a red light background but also in darkness and CO2-free air, the two responses being quite similar.
With epidermal strips, the effect of CO2 on ferricyanide reductase activity at the guard cell plasmalemma was studied by transmission electron microscopy. In the presence of ferric ions, reduced ferricyanide gives an electron dense precipitate of Prussian Blue. In darkness and air, no precipitate was observed. In darkness and CO2-free air as well as under light and normal air, a precipitate was found along the plasmalemma of the guard cells, indicating a ferricyanide reductase activity. With guard cell protoplasts suspended in a medium either in equilibrium with air or in a CO2-free medium the H+ extrusion induced by a blue light pulse added to a red light background was measured. A low CO2 content was obtained by adding photosynthetic algae to the suspension of guard cell protoplasts. In a CO2-free medium the rate of H+ extrusion was enhanced.
The results are discussed on the basis of a possible competition for reducing power between CO2 fixation and a putative blue light dependent redox chain located on the plasma membrane.  相似文献   

18.
Flux response curves were determined at 16 wavelengths of light for the conductance for water vapor of the lower epidermis of detached leaves of Xanthium strumarium L. An action spectrum of stomatal opening resulted in which blue light (wavelengths between 430 and 460 nanometers) was nearly ten times more effective than red light (wavelengths between 630 and 680 nanometers) in producing a conductance of 15 centimoles per square meter per second. Stomata responded only slightly to green light. An action spectrum of stomatal responses to red light corresponded to that of CO2 assimilation; the inhibitors of photosynthetic electron transport, cyanazine (2-chloro-4[1-cyano-1-methylethylamino]-6-ethylamino-s-triazine) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, eliminated the response to red light. This indicates that light absorption by chlorophyll is the cause of stomatal sensitivity to red light. Determination of flux response curves on leaves in the normal position (upper epidermis facing the light) or in the inverted position (lower epidermis facing the light) led to the conclusion that the photoreceptors for blue as well as for red light are located on or near the surfaces of the leaves; presumably they are in the guard cells themselves.  相似文献   

19.
Abstract. The effect of atmospheric humidity on the kinetics of stomatal responses was quantified in gas exchange experiments using sugarcane ( Saccharum spp. hybrid) and soybean ( Glycine max ). Pulses of blue light were used to elicit pulses of stomatal conductance that were mediated by the specific blue light response of guard cells. Kinetic parameters of the conductance response were more closely related to leaf-air vapour pressure difference (VPD) than to relative humidity or transpiration. Increasing VPD significantly accelerated stomatal opening in both sugarcane and soybean, despite an approximately five-fold faster response in sugarcane. In contrast, the kinetics of stomatal recovery (closure) following the pulse were similar in the two species. Acceleration of opening by high VPD was observed even under conditions where soybean exhibited a feedforward response of decreasing transpiration (E) with increasing evaporative demand (VPD). This result suggests that epidermal, rather than bulk leaf, water status mediates the VPD effect on stomatal kinetics. The data are consistent with the hypothesis that increased cpidermal water loss at high VPD decreases the backpressure exerted by neighbouring cells on guard cells. allowing more rapid stomatal opening per unit of guard cell metabolic response to blue light.  相似文献   

20.
Stomata in epidermal strips from growth chamber-grown Vicia faba leaves opened less in response to white light than did stomata from greenhouse-grown leaves. Chlorophyll-mediated, red light-stimulated opening was similar in stomata from the two growth conditions, but stomata from the growth chamber environment had a severely reduced response to blue light. Transfer of plants between the two growth conditions resulted in an acclimation of the stomatal blue light response. Stomata lost blue light sensitivity within 1 d of transfer to growth chamber conditions and gained sensitivity to blue light over an 8 d period after transfer to a greenhouse. Short-term transfer experiments confirmed that the rapid loss of blue light sensitivity was an acclimation response, requiring between 12 and 20 h exposure to growth chamber conditions. The acclimation of the stomatal response to blue light was inversely related to a previously reported acclimation response in which stomata change between high CO2 sensitivity under growth chamber conditions and low CO2 sensitivity under greenhouse conditions. The time courses of the blue light and CO2 acclimation responses were virtually identical, suggesting the possibility of a common acclimation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号