首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Acute liver damage was induced in rats by intragastric doses of dimethylnitrosamine (DMN, 3 mg/100 g body weight) and measured 24 hours later by morphological and biochemical methods. 1, 10-Phenanthroline (1, 10-P, 2 mg/100 g) administered simultaneously with DMN prevented the development of the characteristic morphological picture of liver injury. At the same time, the amount and synthesis of total liver proteins, the activity and distribution of liver β-glucuronidase, and the level of seromucoid and isocitric dehydrogenase (ICDH) activity in the serum, significantly changed by DMN, was within the range of control values when 1, 10-P was simultaneously administered. The protective effect of 1, 10-P against acute DMN hepatotoxicity paralleled the inhibition of some liver microsomal drug-metabolizing enzymes (aniline hydroxylase, morphine demethylase, content of cytochrome P-450). At higher doses of DMN (6 mg and 10 mg/100 g), the administration of 1, 10-P was no longer protective, although the content of cytochrome P-450 was only 20% of the value for normal liver microsomes. Therefore, in acute administration within a certain range of concentration of DMN, 1, 10-P might inhibit the microsomal drug-oxidizing enzymes, thus inhibiting the metabolism of the drug to a more toxic product.  相似文献   

2.
3.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

4.
Previous studies suggested that betaine intake might antagonize the induction of oxidative stress-mediated acute liver injury through regulation of the sulfur-amino acid metabolism. In this study we examined the protective effects of betaine on chronic liver injury and fibrosis induced by dimethylnitrosamine (DMN). Male rats were supplemented with betaine (1%, w/v) in drinking water from 2 weeks prior to the initiation of DMN treatment (10 mg/(kg day), i.p., 3 days/week, for 1, 2, or 4 weeks) until sacrifice. Induction of liver injury was determined by quantifying serum alanine aminotransferase, aspartate aminotransferase activities, bilirubin levels, hepatic xenobiotic-metabolizing capacity, histopathological changes and 4-hydroxyproline levels. Development of oxidative injury was estimated by malondialdehyde (MDA) levels and total oxyradical scavenging capacity (TOSC) of liver and serum toward hydroxyl, peroxyl radicals, and peroxynitrite. Progressive changes in the parameters of liver injury and fibrosis were evident in the rats challenged with DMN. Elevation of MDA levels in liver was significant before the onset of a change in any parameters determined in this study. Betaine supplementation markedly attenuated the induction of hepatotoxicity and fibrosis by DMN. Elevation of MDA and the reduction of TOSC were also depressed significantly. Development of liver injury corresponded well with the induction of oxidative stress in rats treated with DMN, both of which are inhibited effectively by betaine supplementation. It is suggested that betaine may protect liver from fibrogenesis by maintaining the cellular antioxidant capacity.  相似文献   

5.
We have examined the influence of the phenobarbital-induced proliferation of the hepatic endoplasmic reticulum (ER) on the activities of the components of the glucose-6-phosphatase system, i.e., the enzyme, the glucose-6-P translocase (T1), and the phosphate translocase (T2). Young male rats were injected ip twice daily for 4 days with 4 mg/100 g body wt of phenobarbital (PB) or an equivalent volume of saline solution. On the fifth day, the rats were killed and smooth (SER) and rough (RER) fractions of the ER were isolated from liver homogenates. Kinetic constants for glucose-6-P hydrolysis by the system and enzyme were determined and used to calculate the kinetic constants for glucose-6-P transport. T2 activity was approximated by assaying the pyrophosphatase activity at pH 6.0 in intact microsomes. Three times more SER protein was recovered from livers of PB-treated rats. PB-treatment did not alter total liver enzyme activity, but total liver T1 activity was decreased to 59% of the control value. Maximal specific activities of the system, enzyme and T1 were all reduced by PB treatment to 44% of control values in the RER and to 68% of control values in the SER. PB treatment reduced the apparent activity of T2 in RER and SER to 35 and 49% of the respective control values. In the SER from both groups of rats, T1 activity or apparent T2 activity divided by enzyme activity was about 55% of the corresponding ratio in the RER. Our analysis of these data suggests that the lower activities of T1 and T2 in the smooth ER are the results of suppression by some intrinsic component localized in the smooth membrane. Accordingly, the reduction in total liver T1 activity and, therefore, system activity in PB-treated rats reflects the redistribution of the glucose-6-P translocase from the RER to the more abundant SER membrane where it is less active. The possibility is discussed that a higher cholesterol content within the SER membrane is responsible for the lower transport activities.  相似文献   

6.
Fibrosis-related changes in livers of cirrhotic rats induced by dimethylnitrosamine (DMN) have not yet been fully clarified. The aim of this study was to investigate changes in molecular and biochemical markers in DMN-intoxicated rats. DMN was administered to Sprague-Dawley rats for 2 and 5 weeks to induce different degrees of hepatic fibrosis. Liver tissues were assessed for the degree of fibrosis and gene expression. Histological examination of the liver showed a progressive increase in fibrosis scores (1.33 +/- 0.21 and 3.03 +/- 0.29, respectively) and expansion of fibrous septa with collagen-staining fibers in rats after 2 and 5 weeks of DMN administration. Hepatic protein contents of alpha-smooth muscle actin (alpha-SMA) and total collagen were significantly higher in rats administered DMN for both 2 and 5 weeks compared with those in control rats. Hepatic mRNA expressions of alpha-SMA, transforming growth factor-beta1 (TGF-beta1), connective tissue growth factor, tissue inhibitor of metalloproteinase-1, and procollagen I and III were increased in DMN rats after 2 and 5 weeks. Abnormal increases in plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels, plasma and mitochondrial MDA levels, and portal venous pressure were also noted in DMN rats. DMN administration to rats for 2 and 5 weeks induced progressive increases in hepatic fibrosis scores, hepatic mRNA expressions of TGF-beta1 and procollagen I and III genes, plasma levels of ALT and AST, and portal venous pressure, as well as progressive decreases in both liver and body weights. Our results suggest that DMN administration in rats induces biochemical and molecular changes related to fibrogenesis in the liver.  相似文献   

7.
1. The effects of safrole and isosafrole pretreatment on both N- and ring-hydroxylation of 2-acetamidofluorene were studied in male rats and hamsters. 2. Isosafrole (100mg/day per kg body wt.) pretreatment of rats for 3 days did not have any effect on urinary excretion of hydroxy metabolites of 2-acetamidofluorene. However, similar pretreatment with safrole produced increased urinary excretion of N-, 3- and 5-hydroxy derivatives. 3. Similar treatment with these two chemicals for 3 days increased ring-hydroxylation activity by rat liver microsomal material. Increases in N-hydroxylation were much less than those in ring-hydroxylation. Isosafrole was twice as effective as safrole. 4. Increases in hydroxylating activity due to safrole or isosafrole treatment were inhibited by simultaneous administration of ethionine. Similarly, ethionine inhibition was almost completely reversed by the simultaneous administration of methionine. 5. Safrole or isosafrole (0.1mm and 1mm) inhibited 7-hydroxylation activity by liver microsomal material from control rats. At 1mm these two chemicals inhibited both 5- and 7-hydroxylation activity by liver microsomal material from 3-methylcholanthrene-pretreated rats. 3-Hydroxylation activity was not inhibited by 1mm concentrations of these two chemicals. 6. A single injection of safrole (50100 or 200mg/kg body wt.) 24h before assay had no appreciable effect on either N- or ring-hydroxylation activity by hamster liver microsomal material. However, isosafrole (200mg/kg body wt.) treatment inhibited N-, 3- and 5-hydroxylation activities by hamster liver microsomal material; it had no effect on 7-hydroxylation activity.  相似文献   

8.
Fructose effect to suppress hepatic glycogen degradation   总被引:2,自引:0,他引:2  
The effect of fructose on glycogen degradation was examined by measuring the flux of 14C from prelabeled glycogen in perfused rat livers. During 2-h refeeding of 24-h-fasted rats, newly synthesized hepatic glycogen was labeled by intraperitoneal injection of [U-14C] galactose (0.1 mg and 0.02 microCi/g of body weight). The livers of refed rats were then perfused in a nonrecirculating fashion for an initial 30 min with glucose alone (10 mM) for the following 60 min with glucose (10 mM) without (n = 5) or with fructose (1, 2, or 10 mM; n = 5 for each). When livers were exposed to fructose, release of label into the perfusate immediately declined and remained markedly suppressed through the end of perfusion (p less than 0.05). The suppression was dose-dependent; at steady state (50-70 min), label release was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose, respectively (p less than 0.0001). Suppression was not accompanied by significant changes in the activities of glycogen synthase or phosphorylase assessed in vitro. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (Fru-1-P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.60 mumol/g of liver with 1, 2, and 10 mM fructose, respectively; p less than 0.0001). Maximum inhibition of label release was 82%; the Fru-1-P concentration for half inhibition was 0.57 mumol/g of liver, well within the concentration of Fru-1-P attained during refeeding. We conclude that fructose enhances net glycogen accumulation in liver by suppressing glycogenolysis and that the suppression is presumably caused by allosteric inhibition of phosphorylase by Fru-1-P.  相似文献   

9.
The induction of phosphatidylcholine (PC) biosynthesis via the CDPcholine pathway in lung and liver of rats has been shown following the intratracheal administration of 1,1,1-trichloro-2m2-bis(p-chlorophenyl) ethane (DDT) (5 mg/100 g body weight) and endosulfan (1 mg/100 g body weight) for 3 days. Controls received only the vehicle solution (groundnut oil, 0.1 m1/100 g body weight). The treatment of DDT and endosulfan significantly increased the PC contents and the incorporation of radioactive [methyl-3H]choline into PC of lung and liver microsomes. The incorporation of radioactive [methyl-14C]methionine into microsomal PC of lung and liver was not affected significantly by treatment with either of the insecticides. 1,4,5,6,7-hexachloro-5-norbornene-2,3-dimethano cyclic sulfite (endosulfan) administration significantly increased the activity of choline kinase and phosphocholine cytidylyltransferase (both cytosolic and microsomal) of lung, whereas DDT increased the activity of only latter. In liver, both DDT and endosulfan administration significantly increased the activity of choline kinase and phosphocholine cytidylyltransferase (both cytosolic and microsomal). However, the activity of phosphocholinetransferase was not affected in both lung and liver microsomes of rats treated with these insecticides. The PC precursor pool sizes, choline and phosphorylcholine, of lung and liver tissues were not altered by DDT and endosulfan treatments. The present results suggest that the increased level of PC and incorporation of radioactive [methyl-3H]choline into microsomal PC could be the result of increased activity of choline kinase and phosphocholine cytidylyltransferase of lung and liver of rats following intratracheal administration of DDT and endosulfan.  相似文献   

10.
Hu QW  Liu GT 《Life sciences》2006,79(6):606-612
The aim was to investigate the suppressive effect of bicyclol on hepatic fibrosis induced by dimethylnitrosamine (DMN) in mice and the mechanism of its action. Hepatic fibrosis was established by intraperitoneal injection of 8 mg kg(-1) day(-1) on three consecutive days of each week for 4 or 5 weeks. In the prophylactic experiment, bicyclol (100 and 200mg.kg(-1)) was administered by gavage in association with DMN injection. For the therapeutic experiment, mice were firstly injected with DMN for 5 weeks as in the prophylactic experiment, and then the mice in drug groups were orally administered bicyclol (100 and 200mg.kg(-1)) once daily for 5 weeks. As a result, the levels of alanine aminotransferase (ALT), total bilirubin, hydroxyproline (Hyp), prolidase, tumor necrosis factor-alpha (TNFalpha), transforming growth factor beta-1 (TGFbeta(1)), type I collagen in serum and the score of liver fibrosis all significantly increased in the hepatic fibrosis model group in comparison with those in control group. The treatment with bicyclol markedly reduced all the above criteria. Bicyclol also attenuated the decrease of body weight of mice, serum total protein and albumin. In addition, bicyclol treatment inhibited liver TGFbeta(1) and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA expression in the prophylactic experiment. Similarly, bicyclol reduced TIMP-1 levels in liver and serum and increased collagenase activity in the liver in the therapeutic experiment. The result suggest that bicyclol attenuates DMN-induced hepatic fibrosis in mice. Its mechanisms of action may be related to the hepatoprotective and anti-inflammation properties, the down-regulation of liver TGFbeta(1) and TIMP-1 expression and the increase of net collagenase activity in liver.  相似文献   

11.
Liver microsomal lipid peroxidation has been observed in fatal human CCl(4) poisoning, in rats with fatty livers induced by CCl(4) or by yellow phosphorus, and in mice poisoned with 1,1,2,2-tetrachloroethane. These observations suggest the possibility that other instances of toxic liver injury may involve lipid peroxidation. Cases of acute, fatal, toxic liver injury (e.g., from halothane anesthesia) are not likely to occur at or near laboratories equipped to determine whether any lipid peroxidation might have taken place. The data presented indicate that rat livers may be stored frozen for at least 7 days with no demonstrable diminution in CCl(4)-induced conjugated diene absorption of liver microsomal lipids.  相似文献   

12.
Liver fibrosis is a significant health problem which represents the liver’s scarring process and response to injury through deposition of collagen and extracellular matrix, and ultimately leads to cirrhosis. Resveratrol is a naturally occurring phytoalexin found predominantly in grapes. This study aimed to investigate the antifibrotic role of resveratrol on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. Rats were divided into four groups and treated for three weeks; control, resveratrol administered orally (20 mg/kg daily), DMN intraperitoneally injected (10 mg/kg 3 days/week), and the last group was pre-treated daily with resveratrol then injected with DMN, 3 days/week. DMN administration induced severe liver pathological alterations. However, oral administration of resveratrol before DMN significantly prevented the induced loss in body weight, as well as the increase in liver weight which arise from DMN administration. Resveratrol has also inhibited the elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and bilirubin levels. Furthermore, resveratrol significantly increased hepatic reduced glutathione (GSH) levels and reduced the levels of malondialdehyde (MDA) due to its antioxidants effect as well as increased serum protein levels. In addition, DMN induced elevation in hydroxyproline content. On the other hand, hydroxyproline level was significantly reduced in the resveratrol pretreated rats. Resveratrol has also remarkably maintained the normal liver lobular architecture. Moreover, resveratrol had displayed potent potentials to prevent collagen deposition, lymphocytic infiltration, necrosis, steatosis, vascular damage, blood hypertention, cholangiocyte proliferation. It can be concluded that resveratrol has a marked protective role on DMN-induced liver fibrosis in rats, and can be considered as antiproliferative, antihypertensive, as well as antifibrotic agent and may be used to block the development of liver fibrosis.  相似文献   

13.
Cytochrome P450 (CYP) 2E1 is induced by ethanol and is postulated to be a source of reactive oxygen species during alcoholic liver disease. However, there was no difference in liver pathology and radical formation between wild-type and CYP2E1 knockout mice fed ethanol. Other CYP isoforms may contribute these effects if CYP2E1 is inhibited or absent. The purpose of this study was, therefore, to determine if blocking most of the P450 isoforms with 1-aminobenzotriazole (ABT; 100 mg/kg i.g.), has any effect on liver damage and oxidative stress due to alcohol in rats and mice. Male C57BL/6 mice and Wistar rats were fed either high-fat control or ethanol-containing enteral diet for 4 weeks. ABT had a significant inhibitory effect on many P450 isoforms independent of concomitant alcohol administration. However, ABT did not protect against liver damage due to alcohol in either species. Indices of oxidative stress and inflammation were also similar in livers from vehicle-treated and ABT-treated animals fed ethanol. In summary, suppression of P450 activity with ABT had no apparent effect on oxidative stress caused by alcohol in both rats and mice. These data support the hypothesis that oxidative stress and liver damage can occur independently of CYP activities in both rats and mice during early alcohol-induced liver injury.  相似文献   

14.
1. 19-Nor-17alpha-pregna-1,3,5(10)-trien-20-yne-3,17-diol (ethynyloestradiol) or 17beta-hydroxy-19-nor-17alpha-pregn-4-en-20-yn-3-one (norethindrone) but not 17alpha-ethyl-17beta-hydroxy-19-norandrost-4-en-3-one (norethandrolone) caused a time-dependent loss of cytochrome P-450 when incubated in vitro with rat liver microsomal fractions and NADPH-generating systems. 2. The enzyme system catalysing the norethindrone-mediated loss of cytochrome P-450 had many characteristics of the microsomal mixed-function oxidases. It required NADPH and air, and was inhibited by Co. However, it was unaffected by 1 mM-compound SKF 525A. 3. In microsomal fractions from phenobarbitone-pretreated rats the norethindrone-mediated loss of cytochrome P-450 was increased relative to controls. The norethindrone-mediated cytochrome P-450 loss was less pronounced when the animals were pretreated with 3beta-hydroxy-pregn-5-en-2-one 16alpha-carbonitrile (pregnenolone 16alpha-carbonitrile). Pretreatment with 3-methylcholanthrene rendered the animals resistant to the norethindrone effect. 4. Administration in vivo [100mg/kg, intraperitoneally] of norethindrone or ethinyl oestradiol also produced a time-dependent loss of liver cytochrome P-450. Norethandrolone had a similar, though much less-marked, effect. All three steroids lead to an induction of 5-aminolaevulinate synthase and an accumulation of porphyrins in the liver. 5. The loss of cytochrome P-450 and the accumulation of porphyrins in the liver 2 h after the administration of norethindrone to female rats was similar to that seen in males. 6. Rats pretreated with phenobarbitone and given norethindrone or ethynyloestradiol (100mg/kg, intraperitoneally) formed green pigments in their livers. These had characteristics similar to the green pigments produced in the livers of rats after the administration of 2-allyl-2-isopropylacetamide. No green pigments could be extracted from the livers of control rats or those given norethandrolone, oestradiol or progesterone.  相似文献   

15.
To further investigate the relationship between in vivo microsomal enzyme modifiers and in vitro dimethylnitrosamine (DMN) metabolism, male C57BL/6J mice were pretreated with acetone or Aroclor 1254, two compounds known to influence DMN-N-demethylase activity. Pretreatment with acetone enhanced the in vitro microsomal activity of DMN-N-demethylase, as measured by formaldehyde production from DMN. Accompanying this acetone-enhanced demethylase activity was an increase in the covalent binding of [14C]DMN to RNA, protein and DNA. Four distinct Km values dependent on the substrate concentration were observed for the N-demethylase present in control microsomes. Only one Km value was observed for the demethylase in microsomes from acetone-treated animals, but it was significantly lower than the lowest Km observed in the control microsomes. At DMN concentrations of 1 and 10 mM, acetone significantly increased N-demethylation of DMN as compared to control, but not at 100 mM DMN. Aroclor 1254 pretreatment repressed DMN-N-demethylase at 1 mM DMN but enhanced it at 100 mM. These results suggest that there may be multiple forms of DMN-N-demethylase which are dependent on DMN concentration and respond differently to modifiers of the microsomal drug-metabolizing enzymes.  相似文献   

16.
The role of Kupffer cells in the hepatocellular injury and oxidative stress induced by lindane (20 mg/kg; 24h) in hyperthyroid rats (daily doses of 0.1 mg L-3,3',5-triiodothyronine (T3)/kg for three consecutive days) was assessed by the simultaneous administration of gadolinium chloride (GdCl3; 2 doses of 10mg/kg on alternate days). Hyperthyroid animals treated with lindane exhibit enhanced liver microsomal superoxide radical (O2.-) production and NADPH cytochrome c reductase activity, with lower levels of cytochrome P450, superoxide dismutase (SOD) and catalase activity, and glutathione (GSH) content over control values. These changes are paralleled by a substantial increase in the lipid peroxidation potential of the liver and in the O2.- generation/ SOD activity ratio, thus evidencing a higher oxidative stress status that correlates with the development of liver injury characterized by neutrophil infiltration and necrosis. Kupffer cell inactivation by GdCl3 suppresses liver injury in lindane/T3-treated rats with normalization of altered oxidative stress-related parameters, excepting the reduction in the content of GSH and in catalase activity. It is concluded that lindane hepatotoxicity in hyperthyroid state, that comprises an enhancement in the oxidative stress status of the liver, is largely dependent on Kupffer cell function, which may involve generation of mediators leading to pro-oxidant and inflammatory processes.  相似文献   

17.
The peroxisome proliferator-activated receptors (PPARs) impart diverse cellular effects in biological systems. Because stellate cell activation during liver injury is associated with declining PPARgamma expression, we hypothesized that its expression is critical in stellate cell-mediated fibrogenesis. We therefore modulated its expression during liver injury in vivo. PPARgamma was depleted in rat livers by using an adenovirus-Cre recombinase system. PPARgamma was overexpressed by using an additional adenoviral vector (AdPPARgamma). Bile duct ligation was utilized to induce stellate cell activation and liver fibrosis in vivo; phenotypic effects (collagen I, smooth muscle alpha-actin, hydroxyproline content, etc.) were measured. PPARgamma mRNA levels decreased fivefold and PPARgamma protein was undetectable in stellate cells after culture-induced activation. During activation in vivo, collagen accumulation, assessed histomorphometrically and by hydroxyproline content, was significantly increased after PPARgamma depletion compared with controls (1.28 +/- 0.14 vs. 1.89 +/- 0.21 mg/g liver tissue, P < 0.03). In isolated stellate cells, AdPPARgamma overexpression resulted in significantly increased adiponectin mRNA expression and decreased collagen I and smooth muscle alpha-actin mRNA expression compared with controls. During in vivo fibrogenesis, rat livers exposed to AdPPARgamma had significantly less fibrosis than controls. Collagen I and smooth muscle alpha-actin mRNA expression were significantly reduced in AdPPARgamma-infected rats compared with controls (P < 0.05, n = 10). PPARgamma-deficient mice exhibited enhanced fibrogenesis after liver injury, whereas PPARgamma receptor overexpression in vivo attenuated stellate cell activation and fibrosis. The data highlight a critical role for PPARgamma during in vivo fibrogenesis and emphasize the importance of the PPARgamma pathway in stellate cells during liver injury.  相似文献   

18.
19.
Retinol esterification by microsomal acyl coenzyme A:retinol acyltransferase was quantified in rat mammary tumor and liver tissue. Acyltransferase activity in the livers of mammary tumor-bearing rats was 40% of that in normal animals. In response to daily oral doses of 2 mg retinyl acetate for 18-19 days, activity increased 2.8-fold in transplanted rat mammary tumors, 4.1-fold in the livers of tumor-bearing rats, and 1.5-fold in the livers of normal rats. The in vitro esterification of retinol was competitively inhibited by all-trans-N-(4-hydroxyphenyl) retinamide (Ki = 154 microM).  相似文献   

20.
Homogenates of liver, lung, kidney, stomach, small intestine and colon from 8 strains of mice were compared for their ability to metabolize benzo[a]pyrene (BP) and dimethylnitrosamine (DMN) to mutagens. Females of strains CF1, AKR/J, AU/SsJ, DBA/2J, SWR/J, A/J, C3H/HeJ, and C57BL/6J were either untreated or received phenobarbital (PB), 3-methylcholanthrene (MC) or polychlorinated biphenyls (AR) to induce drug-metabolizing enzymes. The effects of these drugs on organ weight and on the amounts of DNA, S-10 protein, and microsomal protein per unit weight of tissue are reported. Salmonella typhimurium TA92 and TA98 were used as indicators of the formation of mutagens. For each organ there was an optimal balance between amount of tissue homogenate and concentration of test compound for maximal yield of revertants. A sensitive radiometric assay of DMN demethylase (DMND) is described which permits measurement of the enzyme in liver, lung and kidney. DMN at 1 mM is used as substrate. Aryl hydrocarbon hydroxylase (AHH) was measured in all tissue using BP as substrate. AR and MC are very good inducers of AHH activity in livers of mice classified as aromatic hydrocarbon responsive, but not in those classified as hydrocarbon nonresponsive. Responsiveness is strain-specific and genetically regulated. Metabolism of BP to mutagens by liver homogenates was correlated with extent of AHH induction. This dimorphism of response of AHH to inducers was present, but less pronounced, in non-hepatic tissues. Basal activities of AHH and DMND were correlated in livers and lungs from untreated mice. DMND activities were increased less than 2-fold by PB, MC or AR treatments. Metabolism of DMN to mutagens was not closely correlated with DMND activities. Strain of mouse, type of tissue and test substance are important variables in assessing the potential effect of microsomal enzyme-inducing agents on the metabolism of mutagenic substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号