首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lukina NI  Soĭdla TR 《Tsitologiia》2002,44(6):585-591
Using our own original computer program, we analysed more than 10 millions b.p. of the complete nucleotide sequence in the human chromosome 21. A graphic catalogue of largest stereospecific anomalies of this sequence is presented. Clusters of different stereospecific anomalies, showing presumably areas of cooperative binding of different regulatory and structural proteins to DNA have been revealed. Most of the large stereospecific anomalies are situated in introns, being often accompanied by regions devoid of some specific dinucleotides.  相似文献   

3.
Lukina NI  Soĭdla TP 《Tsitologiia》2004,46(3):277-282
Using an original computer program, we analysed 3 yeast Saccharomyces cerevisiae genes that contain large stereospecific anomalies (SA) in their promoter regions. Homologous genes for higher eukaryotic organisms contain large SA either in the same promoter regions or in one of their introns, the involved dinucleotide and DNA helical repeat being often conserved. We suppose that both promoter and enhancer-like sequences for these genes are evolutionary related and/or are regulated by related proteins.  相似文献   

4.
Heterotrimeric guanine nucleotide binding proteins (G proteins) transduce extracellular signals received by transmembrane receptors to effector proteins. Each subunit of the G protein complex is encoded by a member of one of three corresponding gene families. Currently, 16 different members of the alpha subunit family, 5 different members of the beta subunit family, and 11 different members of the gamma subunit family have been described in mammals. Here we have identified and characterized Bacterial Artificial Chromosomes (BACs) containing the human homologs of each of the alpha, beta, and gamma subunit genes as well as a G alpha11 pseudogene and a previously undiscovered G gamma5-like gene. The gene structure and chromosome location of each gene was determined, as were the orientations of paired genes. These results provide greater insight into the evolution and functional diversity of the mammalian G protein subunit genes.  相似文献   

5.
Two v-erbA-related genes, named ear-2 and ear-3, have been identified in the human genome and characterized by cDNA cloning. These genes are predicted to encode proteins that are very similar in primary structure to receptors for steroid hormones or thyroid hormone (T3). In addition, amino acid sequences of the ear-2 and ear-3 gene products are very similar each other especially at the DNA binding domain (86% homology) and at the putative ligand binding domain (76% homology). Northern hybridization with ear DNA probes of RNAs from various tissues of a human fetus reveals that the expression of ear-2 is high in the liver whereas the expression of ear-3 is relatively ubiquitous. Hybridization analysis of DNAs from sorted chromosomes shows that the ear-2 gene is located on chromosome 19 and ear-3 on chromosome 5, indicating that the two genes are clearly different from each other.  相似文献   

6.
A growing body of evidence suggests the involvement of sex chromosome genes in mammalian development. We report the cloning and characterization of the complete coding regions of the bovine Y chromosome ZFY and X chromosome ZFX genes, and partial coding regions of porcine and equine ZFX and ZFY genes. Bovine ZFY and ZFX are highly similar to each other and to ZFX and ZFY from other species. While bovine and human ZFY proteins are both 801 amino acids long, bovine ZFX is 5 amino acids shorter than human ZFX. Like in humans, both bovine ZFY and ZFX contain 13 zinc finger motifs and belong to the Krueppel family of C2H2-type zinc finger proteins. The internal exon-intron organization of the bovine, porcine and equine ZFX and ZFY genes has been determined and compared. Within this region, the exon lengths and the positions of the splice sites are conserved, further suggesting a high evolutionary conservation of the ZFX and ZFY genes. Additionally, new alternatively spliced forms of human ZFX have been identified.  相似文献   

7.
A combined physical and genetic map of the Serpulina hyodysenteriae B78T genome was constructed by using pulsed-field gel electrophoresis and DNA blot hybridizations. The S. hyodysenteriae genome is a single circular chromosome about 3.2 Mb in size. The physical map of the chromosome was constructed with the restriction enzymes BssHII, EclXI, NotI, SalI, and SmaI. The physical map was used to constructed a linkage map for genes encoding rRNA, flagellum subunit proteins, DNA gyrase, NADH oxidase, and three distinct hemolysins. Several flaB2-related loci, encoding core flagellum subunit proteins, were detected and are dispersed around the chromosome. The rRNA gene organization in S. hyodysenteriae is unusual. S. hyodysenteriae has one gene each for 5S (rrf), 16S (rrs), and 23S (rrl) rRNAs. The rrf and rrl genes are closely linked (within 5 kb), while the rrs gene is about 860 kb from the other two rRNA genes. Using a probe for the S. hyodysenteriae gyrA gene, we identified a possible location for the chromosomal replication origin. The size and genetic organization of the S. hyodysenteriae chromosome are different from those of previously characterized spirochetes.  相似文献   

8.
J. P. Charles  C. Chihara  S. Nejad    L. M. Riddiford 《Genetics》1997,147(3):1213-1224
A 36-kb genomic DNA segment of the Drosophila melanogaster genome containing 12 clustered cuticle genes has been mapped and partially sequenced. The cluster maps at 65A 5-6 on the left arm of the third chromosome, in agreement with the previously determined location of a putative cluster encompassing the genes for the third instar larval cuticle proteins LCP5, LCP6 and LCP8. This cluster is the largest cuticle gene cluster discovered to date and shows a number of surprising features that explain in part the genetic complexity of the LCP5, LCP6 and LCP8 loci. The genes encoding LCP5 and LCP8 are multiple copy genes and the presence of extensive similarity in their coding regions gives the first evidence for gene conversion in cuticle genes. In addition, five genes in the cluster are intronless. Four of these five have arisen by retroposition. The other genes in the cluster have a single intron located at an unusual location for insect cuticle genes.  相似文献   

9.
Beyond finding individual genes that are involved in medical disorders, an important challenge is the integration of sets of disease genes with the complexities of basic biological processes. We examine this issue by focusing on neuronal multiprotein complexes and their components encoded on the human X chromosome. Multiprotein signaling complexes in the postsynaptic terminal of central nervous system synapses are essential for the induction of neuronal plasticity and cognitive processes in animals. The prototype complex is the N-methyl-D-aspartate receptor complex/membrane-associated guanylate kinase-associated signaling complex (NRC/MASC) comprising 185 proteins and embedded within the postsynaptic density (PSD), which is a set of complexes totaling approximately 1,100 proteins. It is striking that 86% (6 of 7) of X-linked NRC/MASC genes and 49% (19 of 39) of X-chromosomal PSD genes are already known to be involved in human psychiatric disorders. Moreover, of the 69 known proteins mutated in X-linked mental retardation, 19 (28%) encode postsynaptic proteins. The high incidence of involvement in cognitive disorders is also found in mouse mutants and indicates that the complexes are functioning as integrated entities or molecular machines and that disruption of different components impairs their overall role in cognitive processes. We also noticed that NRC/MASC genes appear to be more strongly associated with mental retardation and autism spectrum disorders. We propose that systematic studies of PSD and NRC/MASC genes in mice and humans will give a high yield of novel genes important for human disease and new mechanistic insights into higher cognitive functions.  相似文献   

10.
Ku proteins play an important role in DNA double-strand break (DSB) repair, chromosome maintenance, and growth regulation. To understand the fundamental characteristics of Ku proteins, we examined the electrophoretic mobility and expression of hamster Ku70 and Ku80 and determined the chromosome locations of their genes. The electrophoretic mobility of hamster Ku proteins are different from that of human Ku proteins. No significant changes in the quantity of Ku proteins were observed in CHO-K1 cells treated with 10 Gy of ionizing radiation, suggesting that both proteins are expressed constitutively in amounts adequate to repair DNA DSBs. The chromosome locations of the Ku genes were determined by direct R-banding fluorescence in situ hybridization. The Ku70 gene was localized to Syrian hamster chromosome 4qa4.1--> qa4.2 and Chinese hamster chromosome 2p3.1, and the Ku80 gene was localized to Syrian hamster chromosome 4qb5--> qb6.1 and Chinese hamster chromosome 2p3.5-->p3.6. These results provide clues to the biological functions of Ku, as well as useful information for constructing comparative chromosome maps between hamsters and other mammalian species, including human, mouse, and rat.  相似文献   

11.
CPR proteins are the largest cuticular protein family in arthropods. The whole genome sequence of Anopheles gambiae revealed 156 genes that code for proteins with the R&R Consensus and named CPRs. This protein family can be divided into RR-1 and RR-2 subgroups, postulated to contribute to different regions of the cuticle. We determined the temporal expression patterns of these genes throughout post-embryonic development by means of real-time qRT-PCR. Based on expression profiles, these genes were grouped into 21 clusters. Most of the genes were expressed with sharp peaks at single or multiple periods associated with molting. Genes coding for RR-1 and RR-2 proteins were found together in several co-expression clusters. Twenty-five genes were expressed exclusively at one metamorphic stage. Five out of six X-linked genes showed equal expression in males and females, supporting the presence of a gene dosage compensation system in A. gambiae. Many RR-2 genes are organized into sequence clusters whose members are extremely similar to each other and generally closely associated on a chromosome. Most genes in each sequence cluster are expressed with the same temporal expression pattern and at the same level, suggesting a shared mechanism to regulate their expression.  相似文献   

12.
13.
Polycomb group (PcG) proteins bind and regulate hundreds of genes. Previous evidence has suggested that long-range chromatin interactions may contribute to the regulation of PcG target genes. Here, we adapted the Chromosome Conformation Capture on Chip (4C) assay to systematically map chromosomal interactions in Drosophila melanogaster larval brain tissue. Our results demonstrate that PcG target genes interact extensively with each other in nuclear space. These interactions are highly specific for PcG target genes, because non-target genes with either low or high expression show distinct interactions. Notably, interactions are mostly limited to genes on the same chromosome arm, and we demonstrate that a topological rather than a sequence-based mechanism is responsible for this constraint. Our results demonstrate that many interactions among PcG target genes exist and that these interactions are guided by overall chromosome architecture.  相似文献   

14.
Comparison of the human and mouse genomes has revealed that significant variations in evolutionary rates exist among genomic regions and that a large part of this variation is interchromosomal. We confirm in this work, using a large collection of introns, that human chromosome 19 is the one that shows the highest divergence with respect to mouse. To search for other differences among chromosomes, we examine the distribution of gene functions in human and mouse chromosomes using the Gene Ontology definitions. We found by correspondence analysis that among the strongest clusterings of gene functions in human chromosomes is a group of genes coding for DNA binding proteins in chromosome 19. Interestingly, chromosome 19 also has a very high GC content, a feature that has been proposed to promote an opening of the chromatin, thereby facilitating binding of proteins to the DNA helix. In the mouse genome, however, a similar aggregation of genes coding for DNA binding proteins and high GC content cannot be found. This suggests that the distribution of genes coding for DNA binding proteins and the variations of the chromatin accessibility to these proteins are different in the human and mouse genomes. It is likely that the overall high synonymous and intron rates in chromosome 19 are a by-product of the high GC content of this chromosome.Department of Physiology and Molecular Biodiversity, Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona 18, 08034 Barcelona, Spain  相似文献   

15.
Rat prostatic binding protein genes C1, C2, and C3 were mapped on rat chromosome 5 by in situ hybridization on rat peripheral blood chromosome preparations using three different cDNA probes. Of the grains detected, 15.9%, 25.2%, and 19.6%, respectively, mapped to chromosome 5. For each probe, the label was predominantly located on 5q31, but for C2 and C3 an additional site on 5q21 was found. The results suggest that three genes coding for the different polypeptide chains of rat prostatic binding protein map to the same chromosome and presumably to the same chromosome band.  相似文献   

16.
17.
Five genes with homology to the floral homeotic genes deficiens of Antirrhinum and agamous of Arabidopsis were isolated from tomato. Each of the five genes is unique in the genome and could be localized to a different chromosome by RFLP mapping. Four of the tomato genes (hereafter TM) are flower-specific with distinguishable temporal expression. TM4 and TM8 are 'early', while TM5 and TM6 are 'late' genes. TM4 is homologous to squamous and TM6 is similar to deficiens, which are, respectively, 'early' and 'late' bona fide homeotic genes in Antirrhinum. The proteins encoded by the five tomato genes, like several known homeotic genes from other plants, contain within their N-terminus a highly conserved DNA-binding domain, the MADS box. All known plant MADS box genes also share, however, other properties. They all contain a central, moderately conserved, and rather basic domain, and a highly divergent or even missing C-terminal domain. Furthermore, molecular modelling predicts the presence of a conserved amphipatic alpha helix, at a constant distance from the MADS box in each of these proteins. The common properties of eight MADS box proteins from three plant families indicate that all their domains were coded for by the same ancestor gene. The sequence homology between pairs of MADS genes from different species indicates that the MADS ancestor gene multiplied and diverged in an ancestor plant common to several dicotyledon families.  相似文献   

18.
The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes.The human Y chromosome (60 Mb long) is largely composed of repeti-tive sequences that give it a heterochromatic appearance,and it consists of pseudoautosomal,euchromatic,and heterochromatic regions.Located on the two extremities of the Y chromosome,pseudoautosomal regions 1 and 2 (PAR1 and PAR2,2.6 Mb and 320 bp long,re-spectively) are homologs with the termini of the X chromosome.The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY),which occupy more than 95% of the whole Y chromosome.After evolu-tion,the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related.The Y chromosome is characterized by highly repetitive sequences (including direct repeats,inverted repeats,and palindromes) and high polymorphism.Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure.The consequences of such rearrangements are not only loss but also gain of specific genes.One hundred and fifty three haplotypes have been discovered in the human Y chromosome.The structure of the Y chromosome in the GenBank belongs to haplotype R1.There are 220 genes (104 coding genes,111 pseudogenes,and 5 other uncategorized genes) according to the most recent count.The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families).Among them,16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis.It has been dis-covered that one subset of gene rearrangements on the Y chromosome,"micro-deletions",is a major cause of male infertility in some populations.However,controversies exist about different Y chromosome haplotypes.Six AZFs of the Y chromosome have been discov-ered including AZFa,AZFb,AZFc,and their combinations AZFbc,AZFabc,and partial AZFc called AZFc/gr/gr.Different deletions in AZF lead to different content spermatogenesis loss from teratozoospermia to infertility in different populations depending on their Y hap-lotypes.This article describes the structure of the human Y chromosome and investigates the causes of micro-deletions and their relation-ship with male infertility from the view of chromosome evolution.After analysis of the relationship between AZFc and male infertility,we concluded that spermatogenesis is controlled by a network of genes,which may locate on the Y chromosome,the autochromosomes,or even on the X chromosome.Further investigation of the molecular mechanisms underlying male fertility/infertifity will facilitate our knowledge of functional genomics.  相似文献   

19.
With the exception of Escherichia coli lysyl-tRNA synthetase, the genes coding for the different aminoacyl-tRNA synthetases in procaryotes are always unique. Here we report on the occurrence and cloning of two genes (thrSv and thrS2), both encoding functional threonyl-tRNA synthetase in Bacillus subtilis. The two proteins share only 51.5% identical residues, which makes them almost as distinct from each other as each is from E. coli threonyl-tRNA synthetase (42 and 47%). Both proteins complement an E. coli thrS mutant and effectively charge E. coli threonyl tRNA in vitro. Their genes have been mapped to 250 degrees (thrSv) and 344 degrees (thrS2) on the B. subtilis chromosome. The regulatory regions of both genes are quite complex and show structural similarities. During vegetative growth, only the thrSv gene is expressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号