首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV–vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of −0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10−10 mol cm−2 and 3.36 s−1, respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM  2 mM with LOD of 4.1 μM, (2) 2 mM  5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible.  相似文献   

2.
Nanofibrous glucose electrodes were fabricated by the immobilization of glucose oxidase (GOx) into an electrospun composite membrane consisting of polymethylmethacrylate (PMMA) dispersed with multiwall carbon nanotubes (MWCNTs) wrapped by a cationic polymer (poly(diallyldimethylammonium chloride) (PDDA)) and this nanofibrous electrode (NFE) is abbreviated as PMMA-MWCNT(PDDA)/GOx-NFE. The NFE was characterized for morphology and electroactivity by using electron microscopy and cyclic voltammetry, respectively. Field emission transmission electron microscopy (FETEM) image reveals the dispersion of MWCNT(PDDA) within the matrix of PMMA. Cyclic voltammetry informs that NFE is suitable for performing surface-confined electrochemical reactions. PMMA-MWCNT(PDDA)/GOx-NFE exhibits excellent electrocatalytic activity towards hydrogen peroxide (H(2)O(2)) with a pronounced oxidation current at +100 mV. Glucose is amperometrically detected at +100 mV (vs. Ag/AgCl) in 0.1M phosphate buffer solution (PBS, pH 7). The linear response for glucose detection is in the range of 20 microM to 15 mM with a detection limit of 1 microM and a shorter response time of approximately 4 s. The superior performance of PMMA-MWCNT(PDDA)/GOx-NFE is due to the wrapping of PDDA over MWCNTs that binds GOx through electrostatic interactions. As a result, an effective electron mediation is achieved. A layer of nafion is made over PMMA-MWCNT(PDDA)/GOx-NFE that significantly suppressed the electrochemical interference from ascorbic acid or uric acid. In all, PMMA-MWCNT(PDDA)/GOx-nafion-NFE has exhibited excellent properties for the sensitive determination of glucose like high selectivity, good reproducibility, remarkable stability and without interference from other co-existing electroactive species.  相似文献   

3.
The direct electrochemistry of glucose oxidase (GOD) adsorbed on a colloidal gold modified carbon paste electrode was investigated. The adsorbed GOD displayed a pair of redox peaks with a formal potential of -(449+/-1) mV in 0.1 M pH 5.0 phosphate buffer solution. The response showed a surface-controlled electrode process with an electron transfer rate constant of (38.9+/-5.3)/s determined in the scan rate range from 10 to 100 mV/s. GOD adsorbed on gold colloid nanoparticles maintained its bioactivity and stability. The immobilized GOD could electrocatalyze the reduction of dissolved oxygen and resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection with a high sensitivity (8.4 microA/mM), a linear range from 0.04 to 0.28 mM and a detection limit of 0.01 mM at a signal-to-noise ratio of 3sigma. The sensor could exclude the interference of commonly coexisted uric and ascorbic acid.  相似文献   

4.
A polyethylene-g-acrylic acid (PE-g-AA) graft copolymer was prepared via gamma-ray-irradiation-induced postirradiation procedures, and was used as support material for the immobilization of glucose oxidase. Soluble carbodiimides were used as the coupling agent. Reasonable yields were obtained with CMC but not with EDAC, EEDQ, or WRK. A number of factors were studied. (1) The use of water-soluble carbodiimides as condensing agent was attempted and the optimum condition for coupling glucose oxidase to PE-g-AA was established; (2) the effect of pH and temperature on the reactivity of native and immobilized glucose oxidase was studied. When exposed to temperatures in excess of 60 degrees C, the immobilized glucose oxidase was less sensitive to thermal inactivation than the native enzyme. The optimum pH value for the performance of the enzyme-immobilized membrane was 5. 6. For 200 tests, the response error of glucose sensor was less than 4% and its linear detected range was 0-1000 ppm. The obtained glucose oxidase-immobilized PE-g-AA membranes were kept in pH 5. 6 acetate buffer solution at 4 degrees C. The glucose oxidase activity of the membrane was determined at sevenday intervals. The membranes still have 92% glucose oxidase activity even after eight weeks of storage.  相似文献   

5.
We report on the utilization of a novel nanoscaled cobalt phthalocyanine (NanoCoPc)-glucose oxidase (GOD) biocomposite colloid to create a highly responsive glucose biosensor. The biocomposite colloid is constructed under enzyme-friendly conditions by adsorbing GOD molecules on CoPc nanoparticles via electrostatic interactions. The glucose biosensor can be easily achieved by casting the biocomposite colloid on a pyrolytic graphite electrode (PGE) without any auxiliary matter. It has been found that GOD can be firmly immobilized on PGE surface and maintain its bioactivity after conjugating with NanoCoPc. NanoCoPc displays intrinsic electrocatalytic ability to the oxidation of the product of enzymatic reaction H2O2 and shows a higher catalytic activity than that of bulk CoPc. Under optimal conditions, the biosensor shows a wide linear response to glucose in the range of 0.02-18 mM, with a fast response (5s), high sensitivity (7.71 microA cm(-2) mM(-1)), as well as good thermostability and long-term life. The detection limit was 5 microM at 3 sigma. The general interferences coexisted in blood except ascorbic acid and L-cysteine do not affect glucose determination, and further coating Nafion film on the surface of the biosensor can effectively eliminate the interference from ascorbic acid and L-cysteine. The biosensor with Nafion film has been used for the determination of glucose in serum with an acceptable accuracy.  相似文献   

6.
An important requirement of immobilized enzyme based biosensors is the thermal stability of the enzyme. Studies were carried out to increase thermal stability of glucose oxidase (GOD) for biosensor applications. Immobilization of the enzyme was carried out using glass beads as support and the effect of silane concentration (in the range 1-10%) during the silanization step on the thermal stability of GOD has been investigated. Upon incubation at 70 degrees C for 3h, the activity retention with 1% silane was only 23%, which increased with silane concentration to reach a maximum up to 250% of the initial activity with 4% silane. Above this concentration the activity decreased. The increased stability of the enzyme in the presence of high silane concentrations may be attributed to the increase in the surface hydrophobicity of the support. The decrease in the enzyme stability for silane concentrations above 4% was apparently due to the uneven deposition of the silane layer on the glass bead support. Further work on thermal stability above 70 degrees C was carried out by using 4% silane and it was found that the enzyme was stable up to 75 degrees C with an increased activity of 180% after 3-h incubation. Although silanization has been used for the modification of the supports for immobilization of enzymes, the use of higher concentrations to stabilize immobilized enzymes is being reported for the first time.  相似文献   

7.
High activity of glucose oxidase (GOD) enzyme (immobilized in porous silica particles) is desirable for a better glucose biosensor. In this work, effect of pore diameter of two porous hosts on enzyme immobilization, activity and glucose sensing was compared. The hosts were amine functionalized: (i) microporous silica (NH2-MS) and (ii) mesoporous silica (NH2-SBA-15). Based on whether the dimension of GOD is either larger or smaller than the pore diameter, GOD was immobilized on either external or internal surface of NH2-MS and NH2-SBA-15, with loadings of 512.5 and 634 mg/g, respectively. However, GOD in NH2-SBA-15 gave a higher normalized absolute activity (NAA), which led to an amperometric sensor with a larger linear range of 0.4–13.0 mM glucose. In comparison, GOD in NH2-MS had a lower NAA and a smaller linear range of 0.4–3.1 mM. In fact, the present GOD-NH2-SBA-15 electrode based sensor was better than other MS and SBA-15 based electrodes reported in literature. Thus, achieving only a high GOD loading (as in NH2-MS) does not necessarily give a good sensor performance. Instead, a host with a relatively larger pore than enzyme, together with optimized electrode composition ensures the sensor to be functional in both hyper- and hypoglycemic range.  相似文献   

8.
A novel glucose biosensor was developed, based on the immobilization of glucose oxidase (GOD) with cross-linking in the matrix of bovine serum albumin (BSA) on a Pt electrode, which was modified with gold nanoparticles decorated Pb nanowires (GNPs-Pb NWs). Pb nanowires (Pb NWs) were synthesized by an l-cysteine-assisted self-assembly route, and then gold nanoparticles (GNPs) were attached onto the nanowire surface through –SH–Au specific interaction. The morphological characterization of GNPs-Pb NWs was examined by transmission electron microscopy (TEM). Cyclic voltammetry and chronoamperometry were used to study and to optimize the electrochemical performance of the resulting biosensor. The synergistic effect of Pb NWs and GNPs made the biosensor exhibit excellent electrocatalytic activity and good response performance to glucose. The effects of pH and applied potential on the amperometric response of the biosensor have been systemically studied. In pH 7.0, the biosensor showed the sensitivity of 135.5 μA mM−1 cm−2, the detection limit of 2 μM (S/N = 3), and the response time <5 s with a linear range of 5–2200 μM. Furthermore, the biosensor exhibits good reproducibility, long-term stability and relative good anti-interference.  相似文献   

9.
In this paper, a mediatorless amperometric glucose biosensor based on direct covalent immobilisation of monomolecular layer of glucose oxidase (GOx) on a semiconducting indium-tin oxide (ITO) is demonstrated. The abundance of surface hydroxyl functional group of ITO allows it to be used as a suitable platform for direct covalent immobilisation of the enzyme for sensor architecture. The anodic current corresponding to electrochemical oxidation of the enzymatic product, hydrogen peroxide, at a sputtered Pt electrode at 0.500 V (vs. SCE) was obtained as the sensor signal. It was found that the biosensor based on the direct immobilisation scheme shows a fast biosensor response, minimum interference from other common metabolic species and ease of biosensor miniaturisation. A linear range of 0-10 mM of glucose was demonstrated, which exhibits a high sensitivity as far as performance per immobilised GOx molecule is concerned. A detection limit as low as 0.05 mM and long-term stability were observed. Even more important, the biosensor design allows fabrication through a dry process. These characteristics make it possible to achieve mass production of biosensor compatible with the current electronic integrated circuit manufacturing technologies.  相似文献   

10.
Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C.  相似文献   

11.
We report a simple electrochemical approach for the immobilization of glucose oxidase (GOx) on reduced graphene oxide (RGO). The immobilization of GOx was achieved in a single step without any cross linking agents or modifiers. A simple solution phase approach was used to prepare exfoliated graphene oxide (GO), followed by electrochemical reduction to get RGO-GOx biocomposite. The direct electrochemistry of GOx was revealed at the RGO-GOx modified glassy carbon electrode (GCE). The electrocatalytic and electroanalytical applications of the proposed film were studied by cyclic voltammetry (CV) and amperometry. It is notable that the glucose determination has been achieved in mediator-free conditions. RGO-GOx film showed very good stability, reproducibility and high selectivity. The developed biosensor exhibits excellent catalytic activity towards glucose over a wide linear range of 0.1-27mM with a sensitivity of 1.85μAmM(-1)cm(-2). The facile and easy electrochemical approach used for the preparation of RGO-GOx may open up new horizons in the production of cost-effective biosensors and biofuel cells.  相似文献   

12.
Electrodeposition was used for the co-deposition of glucose oxidase (GOx) enzymes and palladium nanoparticles onto a Nafion-solubilized carbon nanotube (CNT) film. The co-deposited Pd-GOx-Nafion CNT bioelectrode retains its biocatalytic activity and offers an efficient oxidation and reduction of the enzymatically liberated H2O2, allowing for fast and sensitive glucose quantification. The combination of Pd-GOx electrodeposition with Nafion-solubilized CNTs enhances the storage time and performance of the sensor. An extra Nafion coating was used to eliminate common interferents such as uric and ascorbic acids. The fabricated Pd-GOx-Nafion CNT glucose biosensor exhibits a linear response up to 12 mM glucose and a detection limit of 0.15 mM (S/N = 3).  相似文献   

13.
This paper describes the preparation method as well as the in vitro and in vivo evaluation of a novel flexible glucose biosensor designed for long-term subcutaneous implantation. An epoxy-enhanced polyurethane membrane, which includes ca. 30–40% epoxy resin adhesive and 50–70% polyurethane, has been developed and used for the first time as the outer protective membrane of the sensor. This new membrane was developed to increase the in vivo durability and lifetime of implantable biosensors. This epoxy-polyurethane membrane was shown to be porous and is of excellent durability. A sensor with such a membrane shows excellent long-term stability and can last for 4–8 months in solutions at room temperature. To verify the in vivo performance of the sensor, nine sensors were implanted in three rats and tested regularly. Eight sensors kept functioning well in the rats for 10–56 days. The ninth sensor was damaged during implantation. All original sensitivity data as well as four response curves obtained at days 7, 17, 52 and 56, respectively are presented.  相似文献   

14.
Glucose Oxidase was immobilized on a porous polyvinylchloride (PVC) membrane. The activity of the glucose oxidase-PVC membrane decreased when the membrane was mechanically stretch. A linear relationship was observed between the stress and the relative logarithmic activity of the glucose oxidase-PVC membrane. Apparent Michaelis constant (Km) and maximum velocity (Vm) of the glucose oxidase-PVC membrane under stretched conditions were 1.4 and 0.71 times those without stretching, respectively. The decrease of the membrane activity with stress was reproducible. Therefore, the glucose oxidase activity of the membrane can be controlled with stress.  相似文献   

15.
This paper aimed at showing the interest of the composite material based on layered double hydroxides (LDHs) and chitosan (CHT) as suitable host matrix likely to immobilize enzyme onto electrode surface for amperometric biosensing application. This hybrid material combined the advantages of inorganic LDHs and organic biopolymer, CHT. Glucose oxidase (GOD) immobilized in the composite material maintained its activity well as the usage of glutaraldehyde was avoided. The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH, applied potential and temperature, were explored for optimum analytical performance of the enzyme electrode. The enzyme electrode provided a linear response to glucose over a concentration range of 1 x 10(-6) to 3 x 10(-3) M with a high sensitivity of 62.6 mA M(-1) cm(-2) and a detection limit of 0.1 muM based on the signal-to-noise ratio of 3.  相似文献   

16.
Glucose potentiometric biosensor was prepared by immobilizing glucose oxidase on iodide-selective electrode. The hydrogen peroxide formed after the oxidation of glucose catalysed by glucose oxidase (GOD) was oxidized by sodium molybdate (SMo) at iodide electrode in the presence of dichlorometane. The glucose concentration was calculated from the decrease of iodide concentration determined by iodide-selective sensor. The sensitivity of glucose biosensor towards iodide ions and glucose was in the concentration ranges of 1.0 × 10?1–1.0 × 10?6 M and 1.0 × 10?2?1.0 × 10?4 M, respectively. The characterization of proposed glucose biosensor and glucose assay in human serum were also investigated.  相似文献   

17.
Summary The enzyme glucose oxidase (E.C. 1.1.3.4) was immobilized on collagen — a proteinaceous material found in biological systems as a structural material for a wide variety of cells and membranes. The novel technique of electrocodeposition, which utilizes the principles of electrophoresis, was used to deposit the enzyme-collagen complex on stainless steel helical supports. This technique has been developed in our laboratory. The mechanism of complex formation between collagen and enzyme involves multiple salt linkages, hydrogen bonds and van der Waals interactions.As a first step toward examining its feasible technical use, the kinetic behavior of the collagen-supported glucose oxidase was studied in a batch recycle type reactor and was compared with that for the soluble form. A novel reactor configuration consisting of multiple concentric electrocodeposited helical coils was used. The reactor was found to attain a stable level of activity which was maintained for several months under cyclic testing. The optimum levels of pH and temperature for the immobilized form of the enzyme were the same as those of the soluble enzyme, but the immobilized enzyme was more active than the soluble form at higher temperatures and pH. The values of the Michaelis-Menten parameters indicate that the overall reaction rate of the immobilized enzyme may be partially restricted by bulk and matrix diffusion.  相似文献   

18.
A new amperometric biosensor, based on adsorption of glucose oxidase (GOD) at the platinum nanoparticle-modified carbon nanotube (CNT) electrode, is presented in this article. CNTs were grown directly on the graphite substrate. The resulting GOD/Pt/CNT electrode was covered by a thin layer of Nafion to avoid the loss of GOD in determination and to improve the anti-interferent ability. The morphologies and electrochemical performance of the CNT, Pt/CNT, and Nafion/GOD/Pt/CNT electrodes have been investigated by scanning electron microscopy, cyclic voltammetry, and amperometric methods. The excellent electrocatalytic activity and special three-dimensional structure of the enzyme electrode result in good characteristics such as a large determination range (0.1-13.5mM), a short response time (within 5s), a large current density (1.176 mA cm(-2)), and high sensitivity (91mA M(-1)cm(-2)) and stability (73.5% remains after 22 days). In addition, effects of pH value, applied potential, electrode construction, and electroactive interferents on the amperometric response of the sensor were investigated and discussed. The reproducibility and applicability to whole blood analysis of the enzyme electrode were also evaluated.  相似文献   

19.
Amperometric glucose biosensors utilizing commercially available FAD-dependent glucose dehydrogenases from two strains of Aspergillus species are described. Enzymes were immobilized on nanocomposite electrode consisting of multi-walled carbon nanotubes by entrapment between chitosan layers. Unlike the common glucose oxidase based biosensor, the presented biosensors appeared to be O(2)-independent. The optimal amount of enzymes, working potential and pH value of working media of the glucose biosensors were determined. The biosensor utilizing enzyme isolated from Aspergillus sp. showed linearity over the range from 50 to 960 μM and from 70 to 620 μM for enzyme from Aspergillus oryzae. The detection limits were 4.45 μM and 4.15 μM, respectively. The time of response was found to be 60 s. The biosensors showed excellent operational stability - no loss of sensitivity after 100 consecutive measurements and after the storage for 4 weeks at 4 °C in phosphate buffer solution. When biosensors were held in a dessicator at room temperature without use, they kept the same response ability at least after 6 months. Finally, the results obtained from measurements of beverages and wine samples were compared with those obtained with the enzymatic-spectrophotometric and standard HPLC methods, respectively. Good correlation between results in case of analysis of real samples and good analytical performance of presented glucose biosensor allows to use presented concept for mass production and commercial use.  相似文献   

20.
This present study was aimed to fabricate a sensitive and improved amperometric biosensor by the nanoparticles of pyruvate oxidase, which were prepared and immobilized covalently onto pencil graphite electrode. The biosensor showed ideal working within 5 s under defined conditions of pH 6.0 and incubation temperature of 30 °C at an applied voltage of -0.1 V. Under standard assay conditions, a linear response was obtained between pyruvate concentration ranging from 0.001 to 6000 μM and current (μA). A lower detection limit (0.58 μM) and an excellent correlation coefficient (R2 = 0.999) with standard spectrophotometric assay was obtained for the present biosensor. Within and between batches of coefficients of variation were calculated and found to be 3.61 % and 3.33 %, respectively. The biosensor was put to continual use for over 210 days. The biosensor was employed for the measurement of pyruvate level in sera of normal healthy individuals and persons suffering from heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号