共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
R Jerala 《BioTechniques》1992,13(4):564-567
Most mutagenic studies have emphasized the exchange of residues but disregarded the variation in length as the other aspect of protein variability. In this report a novel strategy to simultaneously synthesize degenerate mutagenic oligonucleotides of variable length is reported. Synthesis is done on a normal automated DNA synthesizer with modifications only in the program. Product of such synthesis can be used as a mutagenic oligonucleotide for construction of mutant proteins with variable length of inserts. 相似文献
3.
Under the conditions normally used for detritylation in oligonucleotide synthesis, the haloacetic acid binds strongly to the oligonucleotide. Acetonitrile also forms a complex with the deblocking acid, in competition with the oligonucleotide, and drastically slows detritylation. Incomplete removal of acetonitrile during the deblock step may slow the kinetics enough to result in incomplete detritylation of the oligonucleotide. Acid binding to the growing oligonucleotide causes striking chromatographic effects in the presence of high oligonucleotide mass densities. In packed-bed column reactors, at low linear velocities, the acid binding almost completely depletes free acid from the deblocking solution. This results in an advancing zone within which the oligonucleotide is saturated with acid. Detritylation occurs mostly in a narrow band at the front of the advancing saturated zone. Increasing the DCA concentration in order to achieve quick saturation can give faster and more complete detritylation while minimizing the exposure time of the oligonucleotide to acid. 相似文献
4.
Various conditions for optimum detritylation (i.e., the removal of 5'-O-trityl protecting groups) during solid-phase synthesis of oligodeoxyribonucleotides were investigated. Di- and tri-chloroacetic acids of variable concentrations were used to study the removal of the 4,4'-dimethoxytrityl (DMTr) group. It was found that the DMTr group could be completely removed under much milder acidic conditions than what are currently used for automated solid-phase synthesis. The 2,7-dimethylpixyl (DMPx) is proposed as an alternative and more readily removable group for the protection of the 5'-OH functions both in solid- and solution-phase synthesis. The improved detritylation conditions are expected to minimize the waste and offer a protocol for incorporation of acid sensitive building-blocks in oligonucleotides. 相似文献
5.
Kinetic studies on depurination and detritylation of CPG-bound intermediates during oligonucleotide synthesis. 总被引:1,自引:4,他引:1 下载免费PDF全文
M Septak 《Nucleic acids research》1996,24(15):3053-3058
Fully protected CPG-immobilized monomer, dimer and trimer oligonucleotides were used to study depurination during the chemical synthesis of oligonucleotides. Disappearance of the oligonucleotide during acid exposure time relative to an internal thymidine standard not subject to depurination was monitored by reverse phase HPLC analysis. Depurination half-times obtained for dichloroacetic acid (DCA) and trichloroacetic acid (TCA) in methylene chloride were found to be 3% DCA >> 15% DCA > 3% TCA. In order to understand the implications of depurination during DNA synthesis, the detritylation kinetics of model compounds DMT-dG-pT dimer and DMT-[17mer] mixed-base sequence were also measured. These results improve our ability to properly balance the contradictory goals of obtaining maximum detritylation with minimum depurination in oligonucleotide synthesis. 相似文献
6.
7.
An efficient phosphotriester methodology based on the use of condensing agents in the presence of several O-nucleophilic catalysts has been developed. 相似文献
8.
Prevention of guanine modification and chain cleavage during the solid phase synthesis of oligonucleotides using phosphoramidite derivatives. 总被引:1,自引:8,他引:1 下载免费PDF全文
Phosphoramidite reagents can phosphitylate guanine bases at the O6-position during solid phase synthesis and serious chain cleavage occurs if the base phosphitylation is not eliminated before the iodine/water oxidation step. This can be accomplished by blocking the O6-position with a 2-cyanoethyl protecting group for deoxyribonucleotides or with a p-nitrophenylethyl group for ribonucleotides, regenerating the guanine base with water or acetate ions, or using N-methylanilinium trifluoroacetate (TAMA) as the phosphoramidite activator. The effectiveness of these methods was demonstrated by both 31P NMR studies and by the synthesis of d(Gp)23G, (Gp)14G, and d-(Gp)13rG sequences. 相似文献
9.
A novel method of deprotecting primary alcohols protected with either benzyl or trityl groups by using bromodimethylborane under mild reaction conditions (dichloromethane, -20 to 5 degrees C) has been applied to the synthesis of optically pure mono-acid or mixed-acid 1,2- or 2,3-diacyl-sn-glycerols. This method was particularly useful for the synthesis of long saturated acyl (C12 to C24) as well as unsaturated diacyl-sn-glycerols since little or no acyl migration occurred during deprotection. Diacylation of 3-benzyl-sn-glycerol or 1-benzyl-sn-glycerol followed by bromodimethylborane debenzylation gave mono-acid 1,2- or 2,3-diacyl-sn-glycerols, respectively. The mixed-acid 1,2- or 2,3-diacyl-sn-glycerols were prepared from 1-acyl-sn-glycerols or 3-acyl-sn-glycerols, respectively, by tritylation, acylation with a different fatty acid, followed by detritylation with bromodimethylborane. 相似文献
10.
Porphyrin-linked oligonucleotides. Synthesis and sequence-specific modification of ssDNA 总被引:4,自引:0,他引:4
Oligonucleotide derivatives bearing hemin and deuterohemin groups were synthesized. The derivatives efficiently react with the complementary nucleotide sequence in ssDNA forming covalent adducts and piperidine-labile sites. In the case of the deuterohemin derivative, some direct cleavage of the target DNA occurs. 相似文献
11.
12.
13.
A new method for the liquid phase synthesis of oligonucleotides is described which makes use of polyethylene glycol (PEG) as soluble support and phosphoramidite derivatives as synthons. The new synthetic protocol was applied to a quite large scale production (about 100 mumoles) of such compounds up to the 20mer level. This solution method, called HELP High Efficiency Liquid Phase) Plus, appears effective in terms of speed and coupling yield and can be evaluated for the production of large amount of oligonucleotides. 相似文献
14.
Single step large scale site-directed in vitro mutagenesis using multiple oligonucleotides. 总被引:3,自引:1,他引:3 下载免费PDF全文
F J Perlak 《Nucleic acids research》1990,18(24):7457-7458
15.
Reverse DNA oligonucleotide synthesis (i.e. from 5′→3′) is a strategy that has yet to be exploited fully. While utilized previously for the construction of alternating 3′-3′- and 5′-5′-linked antisense oligonucleotides, the use of nucleoside 5′-phosphoramidites has not generally been used for the elaboration of (modified) oligonucleotides. Presently, the potential of reverse oligonucleotide synthesis for the facile synthesis of 3′-modified DNAs is illustrated using a phosphoramidite derived from tyrosine. The derived oligonucleotide was shown to have chromatographic and electrophoretic properties identical with the modified oligonucleotide resulting from the proteinase K digestion of the vaccinia topoisomerase I–DNA covalent complex. The results confirm the nature of the structure previously assigned to this product, and establish the facility with which proteinase K is able to complete the digestion of the polypeptide backbone of the DNA oligonucleotide-linked topoisomerase I. 相似文献
16.
17.
E L Chernolovskaya N D Kobets R G Borissov T V Abramova V V Vlassov 《FEBS letters》1992,303(2-3):269-271
Reaction of 4-(N-2-chloroethyl-N-methylamino)benzylphosphamides of oligonucleotides (RCl-(pT)16 and RCl-(pApC)6) with human chromatin in intact nuclei and with metaphase chromosomes has been investigated. The oligonucleotides were targeted to poly(A) and poly(TG)-repeating DNA sequences. It was found that the reagents alkylate DNA and some proteins due to specific complex formation. The affinity character of the reaction was proved by the fact that free corresponding oligonucleotides taken in excess or preliminary treatment of chromatin with S1-nuclease both prevent the biopolymers from modification. The results obtained evidence that in human chromatin there are open DNA sequences available for affinity modification with oligonucleotide derivatives. Analysis of patterns of modified proteins within these chromatin areas may give a key to the structure of these chromatin sites. 相似文献
18.
Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides 总被引:2,自引:2,他引:2
Gene targeting through homologous recombination in murine embryonic stem (ES) cells is already strongly suppressed by DNA mismatch-repair (MMR)-dependent anti-recombination when targeting construct and target locus differ at <1% of the nucleotide positions. We demonstrate that MMR activity also raises a strong impediment to gene modification mediated by small synthetic DNA oligonucleotide sequences. In the absence of the DNA MMR gene MSH2, synthetic single-stranded deoxyribo-oligonucleotides can be used to site-specifically modify the ES cell genome. We show that PCR-based procedures can be used to identify and clone modified cells. By this method we have substituted a single codon in the retinoblastoma gene. 相似文献
19.
Oligonucleotides 2 to 7 nucleotide residues long, complementary to the codogenic strand of T7 promoter A2, have been synthesized; all of them contained a ribo-unit at the 3'-end. They were converted into 5'-(N-methyl)phosphoimidazolides, and the affinity reagents obtained were allowed to bind covalently to RNA polymerase in the presence of a promoter. Some of the nucleotide residues covalently attached occupied proper positions relative to the active centre of the phosphodiester bond synthesis and on addition of [alpha-32P]UTP were elongated, so that highly selective affinity labelling occurred. With oligonucleotides of various lengths, different distribution of the label between beta, beta' and sigma subunits of RNA polymerase took place. Most efficient was labelling of beta-subunit by the residue--pCpGpCpU, and of sigma-subunit by the residue--pApApApTp-CpGpCpU (p--radioactive phosphorus atom). In both cases, the amino acid residues labelled were histidines. 相似文献