首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The posterior-vegetal cytoplasm (PVC) of fertilized ascidian eggs plays important roles in embryo development. It has been reported that some maternal RNAs are localized to the PVC. We identified four novel type I postplasmic mRNAs that are localized to the PVC through the use of data from a cDNA project of maternal mRNAs in the eggs of Halocynthia roretzi (MAGEST database). The mRNAs are HrGLUT, HrPEN-1, and HrPEM-3, which show similarity to a glucose transporter, a g1-related protein, and Ciona pem-3, respectively; and HrPEN-2, with no similarity. Maternal mRNAs of all four genes were identically localized to the PVC after ooplasmic segregation. During cleavage, they were concentrated in the centrosome-attracting body (CAB) and were then segregated into the small blastomeres located at the posterior pole. This localization pattern is common to all known type I postplasmic mRNAs found so far. HrGLUT, HrPEN-1, and HrPEM-3 were expressed zygotically in various tissues later in embryogenesis: HrGLUT and HrPEM-3 in the mesenchyme and nervous system, and HrPEN-1 in the ectodermal cells.  相似文献   

2.
Summary

The mosaic behavior of blastomeres isolated from ascidian embryos has been taken as evidence that localized ooplasmic factors (cytoplasmic determinants) specify tissue precursor cells during embryogenesis. Experiments involving the transfer of egg cytoplasm have revealed the presence and localization of various kinds of cytoplasmic determinants in eggs of Halocynthia roretzi. Three cell fates, epidermis, muscle and endoderm, are fixed by cytoplasmic determinants. The three kinds of tissue determinants move in different directions during ooplasmic segregation. Prior to the onset of the first cleavage the three kinds of determinants reside in egg regions that correspond to the future fate map of the embryo and then they are differentially partitioned into specific blastomeres. In addition to tissue-specific determinants, there is evidence suggesting that ascidian eggs contain localized cytoplasmic factors that are responsible for controlling the cleavage pattern and morphogenetic movements. Transplantation of posterior-vegetal egg cytoplasm to an anterior-vegetal position causes a reversal of the anterior-posterior polarity of the cleavage pattern. Localized cytoplasmic factors in the posterior-vegetal region are involved in the generation of a unique cleavage pattern. When vegetal pole cytoplasm is transplanted to the animal pole or equatorial position of the egg, ectopic gastrulation occurs at the site of transplantation. This finding supports the idea that vegetal pole cytoplasm specifies the site of gastrulation. Recently, we started a cDNA project to analyze maternal mRNAs. An arrayed cDNA library of fertilized eggs of H. roretzi was constructed, and more than 2000 clones have been partially sequenced so far. To estimate the proportion of the maternal mRNAs that are localized in the egg and embryo, 150 randomly selected clones were examined by in situ hybridization. We found eight mRNAs that are localized in the eight-cell embryo, of which three were localized to the myoplasm (a specific region of the egg cytoplasm that is partitioned into muscle-lineage blastomeres) of the egg, and then to the postplasm of cleavage-stage embryos. These results indicate that the proportion of localized messages is much higher than we expected. These localized maternal messages may be involved in the regulation of various developmental processes.  相似文献   

3.
Maternal mRNAs localized to specific regions in eggs play important roles in the establishment of embryonic axes and germ layers in various species. Type I postplasmic/PEM mRNAs, which are localized to the posterior-vegetal cortex (PVC) of fertilized ascidian eggs, such as the muscle determinant macho-1 mRNA, play key roles in embryonic development. In the present study, we analyzed the function of the postplasmic/PEM RNA Hr-POPK-1, which encodes a kinase of Halocynthia roretzi. When the function of POPK-1 was suppressed by morpholino antisense oligonucleotides, the resulting malformed larvae did not form muscle or mesenchyme, as in macho-1-deficient embryos. Epistatic analysis indicated that POPK-1 acts upstream of macho-1. When POPK-1 was knocked down, localization of every Type I postplasmic/PEM mRNA examined, including macho-1, was perturbed, showing diffuse early distribution and eventual concentration into a smaller area. This is the probable reason for the macho-1 dysfunction. The postplasmic/PEM mRNAs such as macho-1 and Hr-PEM1 are co-localized with the cortical endoplasmic reticulum (cER) and move with it after fertilization. Eventually they become highly concentrated into a subcellular structure, the centrosome-attracting body (CAB), at the posterior pole of the cleaving embryos. The suppression of POPK-1 function reduced the size of the domain of concentrated cER at the posterior pole, indicating that POPK-1 is involved in the movement of postplasmic/PEM RNAs via relocalization of cER. The CAB also shrank. These results suggest that Hr-POPK-1 plays roles in concentration and positioning of the cER, as well as in the concentration of CAB materials, such as putative germ plasm, in the posterior blastomeres.  相似文献   

4.
Mitochondrial large ribosomal RNA (mtlrRNA) is transferred out of mitochondria and associates with germinal granules in Drosophila and Xenopus embryos. It has been revealed that mtlrRNA outside of mitochondria is required for formation of the germ-line progenitor, or pole cells in Drosophila. In the present study, the distribution of mtlrRNA was examined in embryos of the ascidian, Halocynthia roretzi, during cleavage stages by whole-mount in situ hybridization. Until the 4-cell stage, the distribution of mtlrRNA coincided with that of mitochondria. which are localized to the cortical cytoplasm in the posterior region of the embryos. Both mitochondria and mtlrRNA were preferentially partitioned into muscle-lineage blastomeres during cleavage stages. After the 8-cell stage, a discrepancy in intracellular localization of mitochondria and mtlrRNA became evident. Mitochondria translocated into central yolkless cytoplasm, while mtlrRNA remained in the posterior cortex in the posterior muscle-lineage b astomeres. The significance of the cortical localization of mtlrRNA in muscle precursor cells in ascidian embryos is obscure. However, the results suggest that mtlrRNA is also transferred out of mitochondria in early ascidian embryos and may play some roles in developmental processes.  相似文献   

5.
6.
7.
Maternal poly(A)+RNA, histone mRNA, and actin mRNA exhibit unique spatial distributions in the different ooplasmic regions of ascidian eggs. These RNAs also appear to migrate with their respective ooplasms during the episode of extensive cytoplasmic rearrangement that occurs after fertilization, suggesting they are associated with a structural framework. The role of the cytoskeletal framework (CF) in determining the spatial distribution of maternal mRNA was tested by subjecting Triton X-100 extracted (Styela plicata) eggs and early embryos to in situ hybridization with poly(U) and cloned DNA probes. Grain counts indicated that substantial proportions of the egg poly(A)+RNA, histone mRNA, and actin mRNA were present in the CF and that there was no alteration in the extent of mRNA-CF interactions during the period between fertilization and the two-cell stage. Analysis of grain distributions indicated that poly(A)+RNA, histone mRNA, and actin mRNA were concentrated in the same regions of detergent-extracted eggs as they are in intact eggs. The proportions and spatial distribution of these RNAs in the CF were not affected when the actin cytoskeleton was destabilized by cytochalasin B or DNAse I. The data suggest that maternal mRNA is associated with the CF, that this association is responsible for mRNA rearrangement during ooplasmic segregation, and that mRNA-CF interactions are not dependent on the integrity of the actin cytoskeleton.  相似文献   

8.
Ultraviolet (uv) irradiation of the vegetal hemisphere of fertilized eggs during ooplasmic segregation inhibits subsequent gastrulation and axis formation in ascidian embryos. The molecular basis of this phenomenon was investigated in by comparing in vivo protein synthesis and in vitro mRNA translation in normal and uv-irradiated embryos of the ascidian Styela clava. Analysis of protein synthesis by [35S]methionine incorporation, two-dimensional (2D) gel electrophoresis, and autoradiography showed that only 21 (or about 5%) of 433 labeled polypeptides were missing or decreased in labeling intensity in uv-irradiated embryos. The most prominent of these was a 30,000 molecular weight (pI 6.0) polypeptide (p30). Extraction of gastrulae with the nonionic detergent Triton X-100 showed that p30 is retained in the detergent insoluble residue, suggesting that it is associated with the cytoskeleton. Several lines of evidence suggest that p30 may be involved in axis formation. First, p30 labeling peaks during gastrulation, when the embryonic axis is being established. Second, axis formation and p30 labeling are abolished by the same threshold uv dose, which is distinct from that required to inactivate muscle cell development. Third, the uv sensitivity period for abolishing p30 labeling and axis formation are both restricted to ooplasmic segregation. In vitro translation of egg RNA followed by 2D gel electrophoresis and autoradiography of the protein products showed that p30 is encoded by a maternal mRNA. The translation of p30 mRNA was abolished by uv irradiation of fertilized eggs during ooplasmic segregation suggesting that this message is a uv-sensitive target. The results are consistent with the hypothesis that uv irradiation blocks gastrulation and axis formation by inhibiting the translation of maternal mRNA localized in the vegetal hemisphere of the fertilized egg.  相似文献   

9.
10.
Widespread RNA segregation in a spiralian embryo   总被引:1,自引:0,他引:1  
Asymmetric cell divisions are a crucial mode of cell fate specification in multicellular organisms, but their relative contribution to early embryonic patterning varies among taxa. In the embryo of the mollusc Ilyanassa, most of the early cell divisions are overtly asymmetric. During Ilyanassa early cleavage, mRNAs for several conserved developmental patterning genes localize to interphase centrosomes, and then during division they move to a portion of the cortex that will be inherited by one daughter cell. Here we report an unbiased survey of RNA localization in the Ilyanassa embryo, and examine the overall patterns of centrosomal localization during early development. We find that 3-4% of RNAs are specifically localized to centrosomes during early development, and the remainder are either ubiquitously distributed throughout the cytoplasm or weakly enriched on centrosomes compared with levels in the cytoplasm. We observe centrosomal localization of RNAs in all cells from zygote through the fifth cleavage cycle, and asymmetric RNA segregation in all divisions after the four-cell stage. Remarkably, each specifically localized message is found on centrosomes in a unique subset of cells during early cleavages, and most are found in unique sets of cells at the 24-cell stage. Several specifically localized RNAs are homologous to developmental regulatory proteins in other embryos. These results demonstrate that the mechanisms of localization and segregation are extraordinarily intricate in this system, and suggest that these events are involved in cell fate specification across all lineages in the early Ilyanassa embryo. We propose that greater reliance on segregation of determinants in early cleavage increases constraint on cleavage patterns in molluscs and other spiralian groups.  相似文献   

11.
12.
13.
The peripheral region of ascidian oocytes and zygotes contains five determinants for morphogenesis and differentiation of the embryo. The determinant for the 24 primary muscle cells of the tadpole, macho1, is one of several cortical mRNAs localized in a gradient along the animal-vegetal axis in the oocyte. After fertilization these mRNAs, together with cortical endoplasmic reticulum (cER) and a subcortical mitochondria-rich domain (myoplasm), relocate in two major reorganization phases forming the posterior plasm (postplasm) of the zygote. At the 8-cell stage cortical mRNAs concentrate in a macroscopic cortical structure called the centrosome-attracting body (CAB), forming a characteristic posterior end mark (PEM) in the two posterior vegetal blastomeres. We propose to call the numerous mRNAs showing this particular cortical localization in the posterior region of the embryo postplasmic/PEM RNAs and suggest a nomemclature. We do not know how postplasmic/PEM RNAs reach their polarized distribution in the oocyte cortex but at least PEM1 and macho1 (and probably others) bind to the network of cER retained in isolated cortical fragments. We propose that after fertilization, these postplasmic/PEM mRNAs move in the zygote cortex together with the cER network (cER/mRNA domain) via microfilament- and microtubule-driven translocations. The cER/mRNA domain is localized posteriorly at the time of first cleavage and distributed equally between the first two blastomeres. After the third cleavage, the cER/mRNA domain and dense particles compact to form the CAB in posterior vegetal blastomeres of the 8-cell stage. We discuss the identity of postplasmic/PEM RNAs, how they localize, anchor, relocate and may be translated. We also examine their roles in unequal cleavage and as a source of posterior morphogenetic and differentiation factors.  相似文献   

14.
15.
Unequal partition of preexisting egg cytoplasmic components is one of possible cues to produce various types of cell in development. Segregation during ascidian embryogenesis of mitochondria into muscle lineage cells is a well-known example of cytoplasmic localization and segregation. In this study, using a monoclonal antibody specific to mitochondria, we re-examined changes in the distribution of mitochondria during oogenesis and embryogenesis of the ascidian, Halocynthia roretzi . The quantification method of the relative amount of the mitochondria-specific antigen revealed differences in the amount of mitochondria contained in four blastomere-pairs of an 8-cell embryo; the primary muscle lineage B4.1-pair contained about 40% of the total amount of mitochondria, while the secondary lineage b4.2- and A4.1-pairs contained about 23% and 20% respectively, and non-muscle lineage a 4.2-pair about 17%. In addition, it was shown that the total amount of mitochondria-specific antigen in the embryo remained constant throughout H. roretzi embryonic development. These results suggest that preferential segregation of preexisting mitochondria causes the characteristic distribution pattern of mitochondria within the embryo.  相似文献   

16.
The present investigation was conducted to isolate cDNA clones that correspond to epidermis-specific genes of the ascidian embryo. When cleavage of fertilized eggs of Halocynthia roretzi is blocked by treatment with cytochalasin B and the arrested eggs are reared as one-celled embryos for about 30 hr, they develop features of differentiation of the epidermis only. Translation in vitro of poly(A)+ RNA from cleavage-arrested embryos and analysis of the products by two-dimensional gel electrophoresis revealed several predominant polypeptides that were not detected in a similar analysis of fertilized eggs, suggesting the appearance of epidermis-specific mRNAs in cleavage-arrested embryos. A cDNA library was constructed from arrested one-celled embryos. Differential screening of the library with a total cDNA probe from cleavage-arrested embryos and with a similar probe from fertilized eggs yielded eight different cDNA clones specific for the cleavage-arrested embryos. Northern blot analysis revealed that the mRNAs that corresponded to these cDNAs were present in normal tailbud embryos. In addition, in situ hybridization of whole-mount specimens showed that the mRNAs were restricted to the epidermal cells of tailbud embryos.  相似文献   

17.
18.
Annelid embryos are comprised of yolk-deficient animal and yolk-filled vegetal blastomeres. This "unipolar" organization along the animal-vegetal axis (in terms of ooplasmic distribution) is generated via selective segregation of yolk-free, clear cytoplasm to the animal blastomeres. The pathway that leads to the unipolar organization is different between polychaetes and clitellates (i.e., oligochaetes and hirudinidans). In polychaetes, the clear cytoplasm domain, which is established through ooplasmic segregation at the animal side of the egg, is simply cut up by unequal equatorial cleavage. In clitellates, localization of clear cytoplasm to animal blastomeres is preceded by unification of the initially separated polar domains of clear cytoplasm, which result from bipolar ooplasmic segregation. In this article, I have reviewed recent studies on cytoskeletal mechanisms for ooplasmic localization during early annelid development. Annelid eggs accomplish ooplasmic rearrangements through various combinations of three cytoskeletal mechanisms, which are mediated by actin microfilaments, microtubules and mitotic asters, respectively. One of the unique features of annelid eggs isthat a homologous process is driven by distinct cytoskeletal elements. Annelid eggs may provide an intriguing system to investigate not only mechanical aspects of ooplasmic segregation but also evolutionary divergence of cytoskeletal mechanisms that operate in a homologous process.  相似文献   

19.
The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.  相似文献   

20.
The effect of ultraviolet (uv) light on embryonic development was examined in the ascidian Styela clava. uv irradiation (3.0 x 10(-3) J mm-2) of the entire surface of fertilized eggs during ooplasmic segregation prevented gastrulation, sensory cell induction, and embryonic axis formation. The uv-irradiated embryos completed ooplasmic segregation and cleaved normally, but vegetal blastomeres did not invaginate at the beginning of gastrulation, sensory cells in the larval brain did not develop tyrosinase or melanin pigment, and the larval tail did not develop. Endoderm, epidermis, and muscle cells differentiated in the uv-irradiated embryos, however, as evidenced by expression of endodermal alkaline phosphatase (AP), an epidermal-specific antigen, and alpha-actin, myosin heavy chain, and acetylcholinesterase (AChE) in muscle cells. Higher doses of uv light (6.0-9.0 x 10(-3) J mm-2) suppressed expression of the epidermal antigen and muscle cell markers, whereas the development of endodermal AP was insensitive. Irradiation at various times between fertilization and the 16-cell stage revealed that gastrulation, sensory cell differentiation, and axis formation are sensitive to uv light only during ooplasmic segregation. Irradiation of restricted regions of the zygote during ooplasmic segregation showed that the uv-sensitive components are localized in the vegetal hemisphere. The absorption characteristics of the uv-sensitive components suggest that they are nucleic acids. The results show that uv-sensitive components that specify gastrulation, sensory cell induction, and embryonic axis formation are localized in the vegetal hemisphere of Styela eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号