共查询到20条相似文献,搜索用时 0 毫秒
1.
The outer mesoglea (extracellular matrix; ECM) of hydrozoan jellyfish was found to contain a species-specific meshwork of striated fibers of different diameters. In the mesoglea, molecules were identified which exhibit several features of well known vertebrate ECM: a laminin-like molecule which appears cross-shaped on electronmicrographs, a fibronectin-like molecule (both detectable by their immunoreactivity at the exumbrella side) and a species-specific collagen consisting of 3 different -chains of which at least 2 can be decorated with con A. The -chains are linked by disulfide bridges. Acetic acid extraction of the mesoglea and subsequent salt precipitation yields fibrils which appear banded in the electron microscope and support species-specific adhesion and spreading of isolated tissue. These precipitated fibrils are mainly composed of the disulfide-linked collagen. 相似文献
2.
Background
Molecular spacing is important for cell adhesion in a number of ways, ranging from the ordered arrangement of matrix polymers extracellularly, to steric hindrance of adhesion/signaling complexes intracellularly. This has been demonstrated using nanopatterned RGD peptides, a canonical extracellular matrix ligand for integrin interactions. Cell adhesion was greatly reduced when the RGD-coated nanoparticles were separated by more than 60 nm, indicating a sharp spacing-dependent threshold for this form of cell adhesion. 相似文献3.
Cell adhesion to extracellular matrix regulates the life cycle of integrins. 总被引:3,自引:0,他引:3
下载免费PDF全文

S L Dalton E Scharf R Briesewitz E E Marcantonio R K Assoian 《Molecular biology of the cell》1995,6(12):1781-1791
The expression of alpha 5 beta 1 integrin on the surface of fibroblasts requires adhesion to substratum. We have examined the basis for this adhesion-dependent surface expression by comparing the life cycle of integrins in parallel cultures of adherent and nonadherent cells. Results of biosynthetic labeling experiments in NRK fibroblasts showed that the synthesis and biosynthetic processing of the beta 1 integrin subunit proceed in the absence of cell attachment; however, when examining the behavior of preexisting cell surface integrins, we observed that the alpha beta 1 integrins are internalized and degraded when adhesion to substratum is blocked. A kinetic analysis of integrin internalization in cycloheximide-treated NRK cells showed that each of the fibroblast integrins we examined (in both the beta 1 and beta 3 families) are lost from the cell surface after detachment from substratum. Thus, the default integrin life cycle in fibroblasts involves continuous synthesis, processing, transport to the cell surface, and internalization/degradation. Interestingly, studies with NIH-3T3 cells expressing alpha 1 beta 1 integrin showed that the loss of cell-surface alpha 5 beta 1 integrin is blocked by adhesion of cells to dishes coated with type IV collagen (a ligand for alpha 1 beta 1 integrin) as well as fibronectin. Similarly, adhesion of these cells to dishes coated with type IV collagen stabilizes the surface expression of alpha 5 beta 1 as well as alpha 1 beta 1 integrin. We propose that the adhesion of fibroblasts to extracellular matrix protein alters the integrin life cycle and permits retention of these proteins at the cell surface where they can play important roles in transmitting adhesion-dependent signals. 相似文献
4.
Costa ML Escaleira RC Jazenko F Mermelstein CS 《Cell motility and the cytoskeleton》2008,65(10):801-815
To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems. 相似文献
5.
Prostate tumor CXC-chemokine profile correlates with cell adhesion to endothelium and extracellular matrix 总被引:4,自引:0,他引:4
Engl T Relja B Blumenberg C Müller I Ringel EM Beecken WD Jonas D Blaheta RA 《Life sciences》2006,78(16):1784-1793
Though chemokines of the CXC family are thought to play key roles in neoplastic transformation and tumor invasion, information about CXC chemokines in prostate cancer is sparse. To evaluate the involvement of CXC chemokines in prostate cancer, we analyzed the CXC coding mRNA of both chemokine ligands (CXCL) and chemokine receptors (CXCR), using the prostate carcinoma cell lines PC-3, DU-145 and LNCaP. CXCR proteins were further evaluated by Western blot, CXCR surface expression by flow cytometry and confocal microscopy. The expression pattern was correlated to adherence of the tumor cells to an endothelial cell monolayer or to extracellular matrix components. Based on growth and adhesion capacity, PC-3 and DU-145 were identified to be highly aggressive tumor cells (PC-3>DU-145), whereas LNCaP belonged to the low aggressive phenotype. CXCL1, CXCL3, CXCL5 and CXCL6 mRNA, chemokines with pro-angiogenic activity, were strongly expressed in DU-145 and PC-3, but not in LNCaP. CXCR3 and CXCR4 surface level differed in the following order: LNCaP>DU-145>PC-3. The differentiation factor, fatty acid valproic acid, induced intracellular CXCR accumulation. Therefore, prostate tumor malignancy might be accompanied by enhanced synthesis of angiogenesis stimulating CXC chemokines. Further, shifting CXCR3 and CXCR4 from the cell surface to the cytoplasm might activate pro-tumoral signalling events and indicate progression from a low to a highly aggressive phenotype. 相似文献
6.
H J Allen D Sucato B Woynarowska S Gottstine A Sharma R J Bernacki 《Journal of cellular biochemistry》1990,43(1):43-57
Immunohistochemical studies indicated that galaptin is a major protein of ovarian carcinoma cells present in patient effusions and it is distributed throughout the cytoplasm. Enzyme-linked immunoadsorbent assay (ELISA) and immunoprecipitation experiments demonstrated that galaptin is also a major protein of the A121 ovarian carcinoma cell line, constituting less than or equal to 1% of extractable protein bound by DEAE Sephacel. Western blot analyses revealed that the galaptin present in ovarian carcinoma consists of a 14.5 KD subunit. Ovarian carcinoma and mesothelial cells isolated from patient effusions display surface receptors for galaptin with an apparently greater density of receptors present on the carcinoma cells. A121 cells also display surface receptors for galaptin: binding sites/cell = 3 X 10(8) and Ka = 1.2 X 10(9) M-1. The presence of galaptin in bovine corneal endothelial cells (BCEC) and BCEC-derived extracellular matrix (ECM) was demonstrated by ELISA. Of the total ECM-bound galaptin, about 75% appears to be insoluble in phosphate-buffered saline (PBS) lactose. ECM was also found to contain abudnant receptors for galaptin. Treatment of ECM with lactose increased the apparent galaptin receptor density:binding sites/cm2 = 7 X 10(13) and Ka = 2.6 X 10(9) M-1. Pretreatment of A121 cells with galaptin inhibited adhesion to ECM. The addition of exogenous galaptin to ECM had variable effect on cell adhesion. The data presented here suggest that early adhesion events may be carbohydrate-specific involving interaction between ECM-bound galaptin and cell surface galaptin receptors. 相似文献
7.
8.
This study examines the adhesion, spreading, and migration of human umbilical vein endothelial cells on cross-linked films of artificial extracellular matrix (aECM) proteins. The aECM proteins described here were designed for application in small-diameter grafts and are composed of elastin-like structural repeats and fibronectin cell-binding domains. aECM-RGD contains the RGD sequence derived from fibronectin; the negative control protein aECM-RDG contains a scrambled cell-binding domain. The covalent attachment of poly(ethylene glycol) (PEG) to aECM substrates reduced nonspecific cell adhesion to aECM-RDG-PEG but did not preclude sequence-specific adhesion of endothelial cells to aECM-RGD-PEG. Variation in ligand density was accomplished by the mixing of aECM-RGD-PEG and aECM-RDG-PEG prior to cross-linking. Increasing the density of RGD domains in cross-linked films resulted in more robust cell adhesion and spreading but did not affect cell migration speed. Control of cell-binding domain density in aECM proteins can thus be used to modulate cell adhesion and spreading and will serve as an important design tool as these materials are further developed for use in surgery, tissue engineering, and regenerative medicine. 相似文献
9.
Rana pipiens eggs fertilized by Rana esculenta sperm (ESC) hybrid embryos develop until gastrulation in control Rana pipiens embryos (PIP) and then show morphogenetic arrest. After arrest, ESC do not gastrulate but live for 5 days as blastula-like embryos. We studied the distribution of fibronectin (FN)-containing fibrils and integrin (INT) in PIP and ESC. There are many FN-fibrils in PIP organized in anastomosing networks radiating away from the center of individual cells and across intercellular boundaries. ESC have fewer fibrils compared to PIP. These fibrils are first located between cells in disorganized arrays. After arrest in ESC, when PIP are Stage 14 neurulae, many more FN-fibrils appear. INT-staining occurs in both embryos in similar patterns. In xenoplastic transplantations, we found that the extracellular matrix on the inner surface of the ESC blastocoel roof serves as a substratum for PIP cell migration. In an in vitro assay, we found more cell adhesion to FN-substrata in PIP than in ESC. Cell locomotion rates on FN-substrata were 1.70 +/- 0.85 microns/min for PIP but only 0.46 +/- 0.56 microns/min for ESC. We also found that the inner surface of the blastocoel roof from ESC can not promote cell adhesion and locomotion when Stage 11 fragments are used for conditioning but that Stage 14 fragments can deposit a FN-fibril-rich extracellular matrix which supports PIP mesodermal cell migration at a rate of 1.26 +/- 0.38 microns/min. 相似文献
10.
Lee OH Xu J Fueyo J Fuller GN Aldape KD Alonso MM Piao Y Liu TJ Lang FF Bekele BN Gomez-Manzano C 《Molecular cancer research : MCR》2006,4(12):915-926
The abnormal function of tyrosine kinase receptors is a hallmark of malignant gliomas. Tie2 receptor tyrosine kinase is a specific endothelial cell receptor whose function is positively regulated by angiopoietin 1 (Ang1). Recently, Tie2 has also been found in the nonvascular compartment of several tumors, including leukemia as well as breast, gastric, and thyroid cancers. There is, however, little information on the function of the Ang1/Tie2 pathway in the non-stromal cells within human tumors. We found that surgical glioblastoma specimens contained a subpopulation of Tie2+/CD31- and Tie2+/GFAP+ cells, suggesting that Tie2 is indeed expressed outside the vascular compartment of gliomas. Furthermore, analysis of a tissue array consisting of 116 human glioma samples showed that Tie2 expression in the neoplastic glial cells was significantly associated with progression from a lower to higher grade. Importantly, Ang1 stimulation of Tie2+ glioma cells resulted in increased adherence of the cells to collagen I and IV, suggesting that Tie2 regulates glioma cell adhesion to the extracellular matrix. Conversely, the down-regulation of Tie2 levels by small interference RNA or the addition of soluble Tie2 abrogated the Ang1-mediated effect on cell adhesion. In studying the expression of cell adhesion molecules, we found that Tie2 activation was related to the up-regulation of integrin beta1 levels and the formation of focal adhesions. These results, together with the reported fact that malignant gliomas express high levels of Ang1, suggest the existence of an autocrine loop in malignant gliomas and that a Tie2-dependent pathway modulates cell-to-extracellular matrix adhesion, providing new insights into the highly infiltrative phenotype of human gliomas. 相似文献
11.
Adhesion between cells and extracellular matrix with special reference to hepatic stellate cell adhesion to three-dimensional collagen fibers 总被引:4,自引:0,他引:4
Hepatic stellate cells are located in the perisinusoidal space (space of Disse), and extend their dendritic, thin membranous processes and fine fibrillar processes into this space. The stellate cells coexist with a three-dimensional extracellular matrix (ECM) in the perisinusoidal space. In turn the three-dimensional structure of the ECM regulates the proliferation, morphology, and functions of the stellate cell. In this review, the morphology of sites of adhesion between hepatic stellate cells and extracellular matrix is described. Hepatic stellate cells cultured in polystyrene dishes spread well, whereas the cells cultured on or in type I collagen gel become slender and elongate their long cellular processes which adhere directly to the collagen fibers. Cells in type I collagen gel form a large number of adhesive structures, each adhesive area forming a face but not a point. Adhesion molecules, integrins, for the ECM are localized on the cell surface. Elongation of the cellular processes occurs via integrin-binding to type I collagen fibers. The signal transduction mechanism, including protein and phosphatidylinositol phosphorylation, is critical to induce and sustain the cellular processes. Information on the three-dimensional structures of ECM is transmitted via three-dimensional adhesive structures containing the integrins. 相似文献
12.
13.
Identification of extracellular matrix and cell adhesion molecule genes associated with muscle development in pigs 总被引:1,自引:0,他引:1
Extracellular matrix (ECM) and cell adhesion molecule (CAM) genes are involved in the regulation of skeletal muscle development; however, their roles in skeletal muscle development in pigs are still poorly understood. 65 days postcopulation (dpc) is a critical time point in pig development. Therefore, we analyzed expression of ECM and CAM genes in the longissimus dorsi muscles at 65?dpc from Landrace (lean-type: L65), Tongcheng (obese-type: T65), and Wuzhishan pigs (miniature-type: W65) using microarray technology. A total of 35 genes were differently expressed between the breeds, and of them, 18, 18, and 20 genes, were observed in the comparisons of L65 versus T65, L65 versus W65, and T65 versus W65 (L65/T65, L65/W65, and T65/W65), respectively. In L65/T65, differently expressed genes were widely distributed, whereas in L65/W65 and T65/W65, they mostly focused on the genes encoding CAMs and ECMs proteins. Moreover, the largest number of up-regulated genes involved in skeletal muscle development was detected in L65, a moderate number in W65, and the smallest number was in T65. Cluster analysis suggested that T65 showed a more similar expression pattern to L65 than W65. In addition, we validated that five genes from microarray data were more highly expressed in the prenatal as compared to postnatal periods in Landrace and Tongcheng pigs and showed a greater range of high-level expression during gestation in Landrace than Tongcheng pigs. Our data indicated that ECM and CAM genes are differently expressed among the three breeds, and more complicated molecular events involving CAMs and ECMs were observed in Wuzhishan pigs. This study advances our knowledge of the molecular basis of phenotypic variation and provides a helpful resource for the identification of candidate genes associated with meat production traits in pigs. 相似文献
14.
The human fibroblast class II extracellular matrix receptor mediates platelet adhesion to collagen and is identical to the platelet glycoprotein Ia-IIa complex 总被引:32,自引:0,他引:32
T J Kunicki D J Nugent S J Staats R P Orchekowski E A Wayner W G Carter 《The Journal of biological chemistry》1988,263(10):4516-4519
A monoclonal antibody, P1H5, to the human fibroblast class II extracellular matrix receptor (ECMR II) specifically inhibits human fibroblast adhesion to collagen and immunoprecipitates a cell surface receptor containing an alpha and beta subunit of approximately 140 kilodaltons each (Wayner, E. A., and Carter, W. G. (1987) J. Cell Biol. 105, 1873-1884). We report here that P1H5 also specifically inhibits adhesion of unactivated human platelets to type I and III collagens, but not to fibronectin. Immunoprecipitation of the class II ECMR from Triton X-100 detergent lysates of platelets, after cell surface iodination, identified the platelet collagen receptor. Peptide mapping confirmed that the II alpha and II beta subunits immunoprecipitated from platelets are structurally homologous with those derived from fibroblasts. The platelet ECMR II alpha and -beta subunits comigrate with platelet membrane glycoproteins Ia and IIa, respectively, on two-dimensional nonreduced-reduced sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. These results indicate that platelet and fibroblast adhesion to collagen are both mediated by a similar receptor and that the alpha and beta subunits of this receptor are identical to platelet membrane glycoproteins Ia and IIa, respectively. Although glycoprotein Ia has been previously implicated as a collagen binding protein, our results are the first direct evidence that platelet glycoprotein Ia is associated with glycoprotein IIa in a heterodimer complex and that this complex, by mediating platelet attachment, is an actual receptor for platelet adhesion to collagen. 相似文献
15.
A wheat germ 55-kDa protein was isolated by affinity chromatography with Matrigel immobilized on agarose, followed by preparative gel electrophoresis. This Matrigel-binding protein designated as WG-55 had an amino-terminal amino acid sequence which is identical to that of a putative mature form of wheat storage protein Gbl 1. WG-55 reacted with concanavalin A, indicating its glycoprotein nature as expected from the amino acid sequence of Gbl 1. As expected, similarly, WG-55 exhibited RGD-dependent cell adhesion activity for murine carcinoma cells. These data suggest that WG-55 or mature Gbl 1 protein may play a role in plant cell adhesion. 相似文献
16.
Adhesion is an important virulence function for Entamoeba histolytica, the causative agent of amoebic dysentery. Lipid rafts, cholesterol-rich domains, function in compartmentalization of cellular processes. In E. histolytica, rafts participate in parasite-host cell interactions; however, their role in parasite-host extracellular matrix (ECM) interactions has not been explored. Disruption of rafts with a cholesterol extracting agent, methyl-β-cyclodextrin (MβCD), resulted in inhibition of adhesion to collagen, and to a lesser extent, to fibronectin. Replenishment of cholesterol in MβCD-treated cells, using a lipoprotein-cholesterol concentrate, restored adhesion to collagen. Confocal microscopy revealed enrichment of rafts at parasite-ECM interfaces. A raft-resident adhesin, the galactose/N-acetylgalactosamine-inhibitable lectin, mediates interaction to host cells by binding to galactose or N-acetylgalactosamine moieties on host glycoproteins. In this study, galactose inhibited adhesion to collagen, but not to fibronectin. Together these data suggest that rafts participate in E. histolytica-ECM interactions and that raft-associated Gal/GalNAc lectin may serve as a collagen receptor. 相似文献
17.
Components of the extracellular matrix are believed to guide both nerve cells and neurites to their targets during embryogenesis and, therefore, might be useful for controlling regeneration of nervous tissue in adults. To study the influence of extracellular conditions on neurite outgrowth and cell motility, PC12 cells were suspended in three-dimensional gels containing (i) collagen (0.4 to 2 mg/mL), (ii) collagen (1 mg/mL) with added fibronectin or laminin (1 to 100 mug/mL), and (iii) agarose (7 mg/mL) with added collagen (0.001 to 1 mg/mL). Neurite outgrwoth was stimulated with nerve growth factor (NGF) and both the extent of neurite outgrowth ad cell aggregation were quantitated over 10 to 12 days in culture. The extent of neurite outgrowth was greatest at the lowest collagen concentration tested (0.4 mg/mL) and decreased with increasing concentration. The addition of laminin or fibronectin altered the extent of neurite outgrowth in collagen gels, but the differences were small. Although no neurite growth was observed in pure agarose gels, considerable neurite outgrowth occurred with the addition of small amounts (>/=0.01 mg/mL) of collagen. Mean aggregate size increased more quickly in gels with lower concentrations of collagen. For cells in 1.0 mg/mL collagen, a four- to fivefold increase in aggregate volume was seen between days 2 and 10 o the culture period, whereas the increase in DNA content during this same period was less than twofold, suggesting that the cells were aggregating, not multiplying. These results suggest that the composition of the matrix supporting nerve cells has a significant effect on both neurite outgrowth and cell motility. (c) 1994 John Wiley & Sons, Inc. 相似文献
18.
The differential adhesion of cultured mammalian clonal cell lines to components of the extracellular matrix was examined by kinetic adhesion and long-term growth assays. Uniform artificial matrices were prepared by air drying collagen Type I solution (C) onto a microtiter well and then air drying a solution containing a single glycosaminoglycan (GAG): hyaluronic acid (HA), chondroitin sulfate-4 (CHS-4), or chondroitin sulfate-6 (CHS-6). The adhesion of [3H]thymidine-prelabeled cells suspended in fibronectin (FN) depleted medium was measured at 2 and 6 hr. Neuroblastoma (N18, Lan 1) and melanoma (B16, G361, S91) cell lines exhibited a significantly greater percentage of cells adhering to one or more C-GAG matrices compared with C matrices. Maximal adhesion at 2 hr was to C-HA. In contrast at 2 hr, two glial, two epithelial, and one fibroblastic cell line showed unchanged or significantly decreased binding to C-GAG compared with C matrices. Further experiments using a neuroblastoma (N18) and a glioma (C6) cell line indicated that the adhesion patterns were not altered either by the method of dissociation from the tissue culture dish, preincubation with exogenous GAG, or the addition of exogenous fibronectin. Assays of N18 and C6 adhesion to matrices made from a non-GAG polyanionic compound, polygalacturonic acid (PGA), did not yield the same adhesion patterns as C-HA matrices. Long-term growth studies of a neuroblastoma (N18) melanoma (S91), and glioma (C6) cell line on nonuniform matrices deliberately prepared with GAG-rich and GAG-poor regions complemented the observations from the kinetic adhesion assays. N18 and S91 cells did not grow on areas which did not contain GAG by toluidine blue staining. However, the C6 cells did not grow on areas which did strongly stain for GAG. A quantitative analysis of the long term growth of N18 and C6 cells substantiated these observations. All these data indicate that the cellular phenotype may be correlated with matrix adhesion. Neuroblastomas and melanomas have a greater affinity for GAG-containing matrices while glial, epithelial, and fibroblastic cells appear to have a greater or equal affinity for collagen matrices. 相似文献
19.
Xiao R Ferry AL Dupont-Versteegden EE 《Apoptosis : an international journal on programmed cell death》2011,16(3):221-234
Skeletal muscle atrophy is associated with elevated apoptosis while muscle differentiation results in apoptosis resistance,
indicating that the role of apoptosis in skeletal muscle is multifaceted. The objective of this study was to investigate mechanisms
underlying apoptosis susceptibility in proliferating myoblasts compared to differentiated myotubes and we hypothesized that
cell death-resistance in differentiated myotubes is mediated by enhanced anti-apoptotic pathways. C2C12 myoblasts and myotubes were treated with H2O2 or staurosporine (Stsp) to induce cell death. H2O2 and Stsp induced DNA fragmentation in more than 50% of myoblasts, but in myotubes less than 10% of nuclei showed apoptotic
changes. Mitochondrial membrane potential dissipation was detected with H2O2 and Stsp in myoblasts, while this response was greatly diminished in myotubes. Caspase-3 activity was 10-fold higher in myotubes
compared to myoblasts, and Stsp caused a significant caspase-3 induction in both. However, exposure to H2O2 did not lead to caspase-3 activation in myoblasts, and only to a modest induction in myotubes. A similar response was observed
for caspase-2, -8 and -9. Abundance of caspase-inhibitors (apoptosis repressor with caspase recruitment domain (ARC), and
heat shock protein (HSP) 70 and -25 was significantly higher in myotubes compared to myoblasts, and in addition ARC was suppressed
in response to Stsp in myotubes. Moreover, increased expression of HSPs in myoblasts attenuated cell death in response to
H2O2 and Stsp. Protein abundance of the pro-apoptotic protein endonuclease G (EndoG) and apoptosis-inducing factor (AIF) was higher
in myotubes compared to myoblasts. These results show that resistance to apoptosis in myotubes is increased despite high levels
of pro-apoptotic signaling mechanisms, and we suggest that this protective effect is mediated by enhanced anti-caspase mechanisms. 相似文献