首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The circuits responsible for cerebellar influences on nonsomatic responses have remained largely unknown. This report reviews some recent findings and present new data concerning pathways probably involved in this aspect of cerebellar function. A projection from the cerebellar nuclei to the hypothalamus was described several years ago, and a direct projection from hypothalamus to the cerebellum has recently been reported (6, 7, 8, 14, 15, 16). The present study gives evidence that the projections between hypothalamus and the cerebellar nuclei are at least in part reciprocal. The discovery of such reciprocal connections introduces new routes through which the cerebellum may directly interact with non-somatic centres and offers a more complete picture of the circuits which may be responsible for cerebellar modulation of visceral activity and certain aspects of affective behavior. The demonstration of such circuits indicates that the cerebellum acts as a general modulator and coordinator of a variety of activities, many of which are non-somatic in nature.  相似文献   

2.
Cerebellar development and disease   总被引:4,自引:0,他引:4  
  相似文献   

3.
Presynaptic modulation of synaptic transmission is the primary function of central nicotinic acetylcholine receptors (nAChRs) in developing and adult brain. nAChR activation regulates release of various neurotransmitters, including norepinephrine (NA). Given evidence that NA may serve a critical functional role in cerebellar development, we have undertaken studies to determine whether nAChRs modulate NA release in developing cerebellum. In vitro experiments using cerebellar slices examined the effects of nAChR stimulation on release of radiolabeled NA ([3H]NA). Our data indicate the presence of functional nAChRs on NA terminals in immature cerebellum and subsequent developmental regulation of receptor properties. During postnatal week one, the maximally effective dose of nicotine released 35.0 +/- 1.2% of cerebellar [3H]NA stores. There was a subsequent decline in maximal nicotine-stimulated NA release until postnatal day 30, when Emax values were statistically indistinguishable from adult. Although the efficacy of nicotine changed substantially throughout development, EC50 values did not differ significantly (EC50 = 4.4-12.0 micro m). Pharmacological analysis indicated that this developmental shift in maximum nicotine effect reflects a change in the properties of the nAChRs. These data support recent findings of a possible functional role of nAChRs in regulating cerebellar ontogeny, and provides further support for the role of NA as a neurotrophic factor during development.  相似文献   

4.
Experimental evidence suggests that reactive oxygen species (ROS) could participate in the regulation of some physiological conditions. In the nervous system, ROS have been suggested to act as signaling molecules involved in several developmental processes including cell differentiation, proliferation and programmed of cell death. Although ROS can be generated by several sources, it has been suggested that NADPH oxidase (NOX) could be critical in the production of ROS acting as a signal in some of these events. It has been reported that ROS production by NOX enzymes participate in neuronal maturation and differentiation during brain development. In the present study, we found that during rat cerebellar development there was a differential ROS generation at different ages and areas of the cerebellum. We also found a differential expression of NOX homologues during rat cerebellar development. When we treated developing rats with an antioxidant or with apocynin, an inhibitor of NOX, we found a marked decrease of the ROS levels in all the cerebellar layers at all the ages tested. Both treatments also induced a significant change in the cerebellar foliation as well as an alteration in motor behavior. These results suggest that both ROS and NOX have a critical role during cerebellar development.  相似文献   

5.
There is accumulating evidence that opioid systems are involved in the regulation of fundamental behavioral and physiological processes in invertebrates. Feeding is a basic physiological function that is essential for maintaining homeostasis. Results of studies examining the feeding responses of molluscs and arthropods treated with various opiate agonists and antagonists indicate that delta, kappa, mu, and possibly sigma opioid systems differentially and selectively mediate the components of their natural feeding behavior. Moreover, it appears that at an early evolutionary stage the mu and kappa systems have developed to selectively affect the components of feeding behavior associated with the acquisition and ingestion of food. In addition, evidence suggests that neuropeptides that have been proposed as possible endogenous antagonists of opioid-mediated feeding in mammals may also be involved in the control of feeding in invertebrates. This indicates that there may be an interplay of opioid agonists and antagonists in the regulation of feeding and satiation in invertebrates analogous to that proposed for vertebrates. Moreover, these findings indicate that opioid influences on feeding have been conserved through evolution.  相似文献   

6.
The cerebellum, a structure derived from the dorsal part of the most anterior hindbrain, is important for integrating sensory perception and motor control. While the structure and development of the cerebellum have been analyzed most extensively in mammals,recent studies have shown that the anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost) species, including zebrafish. In the mammalian and teleost cerebellum,Purkinje and granule cells serve, respectively, as the major GABAergic and glutamatergic neurons. Purkinje cells originate in the ventricular zone (VZ), and receive inputs from climbing fibers. Granule cells originate in the upper rhombic lip (URL) and receive inputs from mossy fibers. Thus, the teleost cerebellum shares many features with the cerebellum of other vertebrates, and isa good model system for studying cerebellar function and development. The teleost cerebellum also has features that are specific to teleosts or have not been elucidated in mammals, including eurydendroid cells and adult neurogenesis. Furthermore, the neural circuitry in part of the optic tectum and the dorsal hindbrain closely resembles the circuitry of the teleost cerebellum; hence,these are called cerebellum-like structures. Here we describe the anatomy and development of cerebellar neurons and their circuitry, and discuss the possible roles of the cerebellum and cerebellum-like structures in behavior and higher cognitive functions. We also consider the potential use of genetics and novel techniques for studying the cerebellum in zebrafish.  相似文献   

7.
Cholestanol induces apoptosis of cerebellar neuronal cells   总被引:1,自引:0,他引:1  
Cerebrotendinous xanthomatosis (CTX) is a hereditary lipid storage disease characterized by hyper-cholestanolemia, cerebellar ataxia, xanthoma, and cataract. We hypothesized that cholestanol in serum of CTX patients might induce neuronal cell death in the cerebellum and eventually lead to cerebellar ataxia. To gain support for this hypothesis we developed hyper-cholestanolemia rats by feeding cholestanol. Neuronal cells, especially Purkinje cells in the cerebellum were stained by Sudan black B only in the cholestanol-fed rats, indicating the deposit of cholestanol in cerebellum. To examine effects of cholestanol in vitro, cerebellar neuronal cells were cultured with cholestanol. The cholestanol concentration increased and the viability decreased in cells cultured with cholestanol. Apoptosis was evident in cells cultured with cholestanol more frequently than in control cells, determined using the terminal deoxynucleotidyl transferase (TdT) dUTP nick end-labeling (TUNEL) method. As activities of interleukin-1beta-converting enzyme (ICE) and CPP32 protease were increased in cells cultured with cholestanol, all these data taken together suggest that cholestanol induced apoptosis of cerebellar neuronal cells. Our observations may explain the mechanism of cerebellar ataxia of CTX patients.  相似文献   

8.
近年来许多研究发现,小脑作为运动控制的主要脑区,除参与运动控制外也与孤独症、精神分裂症、奖励相关的认知功能和社会行为有关,因此小脑相关研究越来越受到重视。研究小脑参与运动学习和运动控制的神经机制是神经科学中最重要的课题之一。眼睛运动的肌肉协调和生物运动特征比其他类型的运动更简单,这使眼动成为研究小脑在运动控制中作用的理想模型。作为收集外界信息的主要方式之一,视觉对日常生活至关重要。为确保清晰视觉,3种主要类型的眼动(眼跳、平滑追随眼动(SPEM)和注视)需受小脑的精确控制,以确保静止或移动的物体保持在视小凹的中心。异常眼动可导致视力障碍,并可作为诊断各种疾病的临床指标。因此,眼动控制研究具有重要的医学和生物学意义。虽然对小脑皮层和顶核在调节眼动中的作用有基本了解,但眼动动力学编码的确切神经机制,尤其是小脑顶核控制追随眼动和注视的神经机制仍不清楚。本综述总结了目前小脑在运动和认知等方面的主要研究问题与小脑相关研究的潜在应用价值,以及近年来有关小脑控制眼动的相关文献,并深入探讨了利用单细胞记录和线性回归模型分析小脑皮层和顶核同一神经元同时参与控制不同类型的眼动,而不同类型眼动的不同动力学参数编码原则不同。此外,基于检测微眼跳的研究结果,我们讨论了小脑顶核参与控制视觉注视的可能神经机制。最后,讨论了最近技术进步给小脑研究带来的新机遇,为今后与小脑相关的研究和脑控义肢的优化控制(例如通过单独改善运动参数优化义肢控制)提供了新思路。  相似文献   

9.
Sharks as a group have a long history as highly successful predatory fishes. Although, the number of recent studies on their diet, feeding behavior, feeding mechanism, and mechanics have increased, many areas still require additional investigation. Dietary studies of sharks are generally more abundant than those on feeding activity patterns, and most of the studies are confined to relatively few species, many being carcharhiniform sharks. These studies reveal that sharks are generally asynchronous opportunistic feeders on the most abundant prey item, which are primarily other fishes. Studies of natural feeding behavior are few and many observations of feeding behavior are based on anecdotal reports. To capture their prey sharks either ram, suction, bite, filter, or use a combination of these behaviors. Foraging may be solitary or aggregate, and while cooperative foraging has been hypothesized it has not been conclusively demonstrated. Studies on the anatomy of the feeding mechanism are abundant and thorough, and far exceed the number of functional studies. Many of these studies have investigated the functional role of morphological features such as the protrusible upper jaw, but only recently have we begun to interpret the mechanics of the feeding apparatus and how it affects feeding behavior. Teeth are represented in the fossil record and are readily available in extant sharks. Therefore much is known about their morphology but again functional studies are primarily theoretical and await experimental analysis. Recent mechanistic approaches to the study of prey capture have revealed that kinematic and motor patterns are conserved in many species and that the ability to modulate feeding behavior varies greatly among taxa. In addition, the relationship of jaw suspension to feeding behavior is not as clear as was once believed, and contrary to previous interpretations upper jaw protrusibility appears to be related to the morphology of the upper jaw-chondrocranial articulation rather than the type of jaw suspension. Finally, we propose a set of specific hypotheses including: (1) The functional specialization for suction feeding hypothesis that morphological and functional specialization for suction feeding has repeatedly arisen in numerous elasmobranch lineages, (2) The aquatic suction feeding functional convergence hypothesis that similar hydrodynamic constraints in bony fishes and sharks result in convergent morphological and functional specializations for suction feeding in both groups, (3) The feeding modulation hypothesis that suction capture events in sharks are more stereotyped and therefore less modulated compared to ram and bite capture events, and (4) The independence of jaw suspension and feeding behavior hypothesis whereby the traditional categorization of jaw suspension types in sharks is not a good predictor of jaw mobility and prey capture behavior. Together with a set of questions these hypotheses help to guide future research on the feeding biology of sharks.  相似文献   

10.
The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin‐like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time‐points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific‐ and time‐dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co‐localizes with other IGSF proteins with well‐known functions in cerebellar development: TAG‐1 and L1. Functional analysis shows that IGSF3 controls the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X‐linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75–92, 2017  相似文献   

11.
Immunocytochemical studies using antibodies raised against the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA) and against the 28 Kd vitamin D dependent calcium binding protein (calbindin) in the cerebellum, are reviewed. The GABA immunoreactive neurones found in the cerebellar cortex were the Purkinje cell (PC), the three classes of intrinsic inhibitory interneurones, stellate, basket and Golgi cells and the cells of Lugaro. Some of the neurons of the cerebellar nuclei were also found to be GABA immunoreactive. A part of these could be identified as extrinsic neurones projecting either back to the cerebellar cortex, or to the inferior olive, both these pathways being topographically highly organized but arising from independent parent neurons. The presumed inhibitory function of these two pathways are discussed. Calbindin immunoreactivity in the cerebellum was confined to the PCs, staining concerned the whole cell including soma, branching dendrites, axons and axons terminals. The antibody, which appears to be tightly bound to the PC in vivo, failed to stain some of the PC when cerebellar slices maintained in vitro were studied. The stability of the antigen-antibody binding and the use of calbindin as a marker specific for the PC in the cerebellum, is discussed. Co-localization of GABA with calbindin as well as with other calcium binding proteins are reported to be found in the PCs. While these co-localizations have led to much speculation, conclusive functional roles for them have not been identified at present.  相似文献   

12.
According to modern views of the cerebellum in motor control, each cerebellar functional unit, or microzone, learns how to execute predictive and coordinative control, based on long-term depression of the granule cell-Purkinje cell synapses. In the present paper, in light of recent experimental and theoretical studies on synaptic elimination and cerebellar motor learning, a model of the formation of cerebellar microzones by climbing fiber synaptic elimination is proposed. It is shown that competition for an activity-dependent supply of neurotrophic factor can reproduce the spatio-temporal characteristics of climbing fiber synaptic elimination. It is further shown that when this elimination is accurate, motor coordination can be acquired in an arm reaching task. In view of the results of the present study, several predictions are proposed. Received: 19 January 1998 / Accepted in revised form: 22 April 1998  相似文献   

13.
Schizophrenia is a highly heritable neuropsychiatric disorder affecting ~1% of the world's population. Linkage and association studies have identified multiple candidate schizophrenia susceptibility genes whose functions converge on the glutamatergic neurotransmitter system. One such susceptibility gene encoding D-amino acid oxidase (DAO), an enzyme that metabolizes the NMDA receptor (NMDAR) co-agonist D-serine, has the potential to modulate NMDAR function in the context of schizophrenia. To further investigate its cellular regulation, we sought to identify DAO-interacting proteins that participate in its functional regulation in rat cerebellum, where DAO expression is especially high. Immunoprecipitation with DAO-specific antibodies and subsequent mass spectrometric analysis of co-precipitated proteins yielded 24 putative DAO-interacting proteins. The most robust interactions occurred with known components of the presynaptic active zone, such as bassoon (BSN) and piccolo (PCLO). The interaction of DAO with BSN was confirmed through co-immunoprecipitation assays using DAO- and BSN-specific antibodies. Moreover, DAO and BSN colocalized with one another in cultured cerebellar granule cells and in synaptic junction membrane protein fractions derived from rat cerebellum. The functional consequences of this interaction were studied through enzyme assay experiments, where DAO enzymatic activity was significantly inhibited as a result of its interaction with BSN. Taking these results together, we hypothesize that synaptic D-serine concentrations may be under tight regulation by a BSN-DAO complex. We therefore predict that this mechanism plays a role in the modulation of glutamatergic signaling through NMDARs. It also furthers our understanding of the biology underlying this potential therapeutic entry point for schizophrenia and other psychiatric disorders.  相似文献   

14.
The organization of the vertebrate cerebellum has been thoroughly studied over the past century, but the function of this structure remains poorly understood. In elasmobranch fishes, the cerebellum displays tremendous variation in size and development although the basic and conservative nature of cerebellar circuitry as seen in other vertebrate taxa is largely retained. Large and morphologically complex cerebelli have evolved independently in both sharks and batoids, and the relative development of this structure in both taxa parallels those of birds and mammals. There are relatively few studies of the physiological role of the cerebellum in generating or shaping behaviors, however, and a convincing explanation of cerebellar hypertrophy in elasmobranchs is lacking. The purpose of this article is to review the current understanding of the structure of the cerebellum in elasmobranch fishes, the physiological responses of cerebellar neurons and the possible role of the cerebellum in behavior. I will also provide a number of hypotheses for future research directions, based upon models that have been suggested by different investigators. These hypotheses include models of cerebellar function as a sensory coincidence detector, a dynamic state estimator and/or a direct modulator of motor programs. Hypotheses concerning the possible organization of cerebellar microcomplexes, the evolution of afferent and efferent cerebellar connections paralleling those observed in mammals and the role of the cerebellum in learning are also suggested.  相似文献   

15.
Orexins, which were initially identified as endogenous peptide ligands for two orphan G-protein coupled receptors (GPCRs), have been shown to have an important role in the regulation of energy homeostasis. Furthermore, the discovery of orexin deficiency in narcolepsy patients indicated that orexins are highly important factors for the sleep/wakefulness regulation. The efferent and afferent systems of orexin-producing neurons suggest interactions between these cells and arousal centers in the brainstem as well as important feeding centers in the hypothalamus. Electrophysiological studies have shown that orexin neurons are regulated by humoral factors, including leptin, glucose, and ghrelin as well as monoamines and acetylcholin. Thus, orexin neurons have functional interactions with hypothalamic feeding pathways and monoaminergic/cholinergic centers to provide a link between peripheral energy balance and the CNS mechanisms that coordinate sleep/wakefulness states and motivated behavior such as food seeking.  相似文献   

16.
Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex.  相似文献   

17.
芬太尼作为一种合成的阿片类药物,可与μ型阿片受体(mu-opioid receptor,MOR)结合产生镇痛、镇静及奖赏相关的行为.小脑的功能不仅局限于对躯体平衡、肌张力和随意运动的调节,还有情绪调节、认知和学习记忆等功能.有研究表明,小脑中广泛分布着功能性的MOR,但其对小脑功能的影响还未见报道.本文旨在采用在体电生...  相似文献   

18.
The upper rhombic lip, a prominent germinal zone of the cerebellum, was recently demonstrated to generate different neuronal cell types over time from spatial subdomains. We have characterized the differentiation of the upper rhombic lip derived granule cell population in stable GFP-transgenic zebrafish in the context of zebrafish cerebellar morphogenesis. Time-lapse analysis followed by individual granule cell tracing demonstrates that the zebrafish upper rhombic lip is spatially patterned along its mediolateral axis producing different granule cell populations simultaneously. Time-lapse recordings of parallel fiber projections and retrograde labeling reveal that spatial patterning within the rhombic lip corresponds to granule cells of two different functional compartments of the mature cerebellum: the eminentia granularis and the corpus cerebelli. These cerebellar compartments in teleosts correspond to the mammalian vestibulocerebellar and non-vestibulocerebellar system serving balance and locomotion control, respectively. Given the high conservation of cerebellar development in vertebrates, spatial partitioning of the mammalian granule cell population and their corresponding earlier-produced deep nuclei by patterning within the rhombic lip may also delineate distinct functional compartments of the cerebellum. Thus, our findings offer an explanation for how specific functional cerebellar circuitries are laid down by spatio-temporal patterning of cerebellar germinal zones during early brain development.  相似文献   

19.
During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and autism spectrum disorders.  相似文献   

20.
Primary coenzyme Q10 deficiency and the brain   总被引:3,自引:0,他引:3  
Our findings in 19 new patients with cerebellar ataxia establish the existence of an ataxic syndrome due to primary CoQ10 deficiency and responsive to CoQ10 therapy. As all patients presented cerebellar ataxia and cerebellar atrophy, this suggests a selective vulnerability of the cerebellum to CoQ10 deficiency. We investigated the regional distribution of coenzyme Q10 in the brain of adult rats and in the brain of one human subject. We also evaluated the levels of coenzyme Q9 (CoQ9) and CoQ10 in different brain regions and in visceral tissues of rats before and after oral administration of CoQ10. Our results show that in rats, amongst the seven brain regions studied, cerebellum contains the lowest level of CoQ. However, the relative proportion of CoQ10 was the same (about 30% of total CoQ) in all regions studied. The level of CoQ10 is much higher in brain than in blood or visceral tissue, such as liver, heart, or kidney. Daily oral administration of CoQ10 led to substantial increases of CoQ10 concentrations only in blood and liver. Of the four regions of one human brain studied, cerebellum again had the lowest CoQ10y concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号