首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607--3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95--106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na(+),K(+)-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3-PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.  相似文献   

2.
We previously reported that expression of tight-junction molecules occludin, claudin-6 and claudin-7, as well as establishment of epithelial polarity, was triggered in mouse F9 cells expressing hepatocyte nuclear factor (HNF)-4alpha [H. Chiba, T. Gotoh, T. Kojima, S. Satohisa, K. Kikuchi, M. Osanai, N. Sawada. Hepatocyte nuclear factor (HNF)-4alpha triggers formation of functional tight junctions and establishment of polarized epithelial morphology in F9 embryonal carcinoma cells, Exp. Cell Res. 286 (2003) 288-297]. Using these cells, we examined in the present study behavior of tight-junction, adherens-junction and cell polarity proteins and elucidated the molecular mechanism behind HNF-4alpha-initiated junction formation and epithelial polarization. We herein show that not only ZO-1 and ZO-2, but also ZO-3, junctional adhesion molecule (JAM)-B, JAM-C and cell polarity proteins PAR-3, PAR-6 and atypical protein kinase C (aPKC) accumulate at primordial adherens junctions in undifferentiated F9 cells. In contrast, CRB3, Pals1 and PATJ appeared to exhibit distinct subcellular localization in immature cells. Induced expression of HNF-4alpha led to translocation of these tight-junction and cell polarity proteins to beltlike tight junctions, where occludin, claudin-6 and claudin-7 were assembled, in differentiated cells. Interestingly, PAR-6, aPKC, CRB3 and Pals1, but not PAR-3 or PATJ, were also concentrated on the apical membranes in differentiated cells. These findings indicate that HNF-4alpha provokes not only expression of tight-junction adhesion molecules, but also modulation of subcellular distribution of junction and cell polarity proteins, resulting in junction formation and epithelial polarization.  相似文献   

3.
Epithelial cells possess apical-basolateral polarity and form tight junctions (TJs) at the apical-lateral border, separating apical and basolateral membrane domains. The PAR3-aPKC-PAR6 complex plays a central role in TJ formation and apical domain development during tissue morphogenesis. Inactivation and overactivation of aPKC kinase activity disrupts membrane polarity. The mechanism that suppresses active aPKC is unknown. KIBRA, an upstream regulator of the Hippo pathway, regulates tissue size in Drosophila and can bind to aPKC. However, the relationship between KIBRA and the PAR3-aPKC-PAR6 complex remains unknown. We report that KIBRA binds to the PAR3-aPKC-PAR6 complex and localizes at TJs and apical domains in epithelial tissues and cells. The knockdown of KIBRA causes expansion of the apical domain in MDCK three-dimensional cysts and suppresses the formation of apical-containing vacuoles through enhanced de novo apical exocytosis. These phenotypes are restored by inhibition of aPKC. In addition, KIBRA directly inhibits the kinase activity of aPKC in vitro. These results strongly support the notion that KIBRA regulates epithelial cell polarity by suppressing apical exocytosis through direct inhibition of aPKC kinase activity in the PAR3-aPKC-PAR6 complex.  相似文献   

4.
BACKGROUND: Epithelial cells have apicobasal polarity and an asymmetric junctional complex that provides the bases for development and tissue maintenance. In both vertebrates and invertebrates, the evolutionarily conserved protein complex, PAR-6/aPKC/PAR-3, localizes to the subapical region and plays critical roles in the establishment of a junctional complex and cell polarity. In Drosophila, another set of proteins called tumor suppressors, such as Lgl, which localize separately to the basolateral membrane domain but genetically interact with the subapical proteins, also contribute to the establishment of cell polarity. However, how physically separated proteins interact remains to be clarified. RESULTS: We show that mammalian Lgl competes for PAR-3 in forming an independent complex with PAR-6/aPKC. During cell polarization, mLgl initially colocalizes with PAR-6/aPKC at the cell-cell contact region and is phosphorylated by aPKC, followed by segregation from apical PAR-6/aPKC to the basolateral membrane after cells are polarized. Overexpression studies establish that increased amounts of the mLgl/PAR-6/aPKC complex suppress the formation of epithelial junctions; this contrasts with the previous observation that the complex containing PAR-3 promotes it. CONCLUSIONS: These results indicate that PAR-6/aPKC selectively interacts with either mLgl or PAR-3 under the control of aPKC activity to regulate epithelial cell polarity.  相似文献   

5.
The cell polarity protein PAR3, conserved from the nematode to the vertebrate, forms a complex with PAR6 and atypical protein kinase C (aPKC), and the protein complex occurs at the tight junctions in mammalian epithelial cells. Here we have cloned human cDNA for a novel PAR3 homologue, designated PAR3beta, whose messages are present in a variety of tissues and most abundantly expressed in the adult and fetal kidneys. The encoded protein of 1,205 amino acids contains a region homologous to the aPKC-binding domain of PAR3alpha, another human homologue previously identified, and three PDZ domains; the first PDZ domain of PAR3alpha is considered to interact with PAR6. Unexpectedly, in contrast to other PAR3s found in various species, PAR3beta is incapable of binding to any isotypes of PAR6 or aPKC. Nevertheless PAR3beta, expressed intrinsically or extrinsically, localizes to the tight junctions, indicating that the localization does not require the ternary complex formation.  相似文献   

6.
BACKGROUND: The Par-3/Par-6/aPKC complex is a key regulator of cell polarity in a number of systems. In Drosophila, this complex acts at the zonula adherens (adherens junctions) to establish epithelial polarity and helps to orient the mitotic spindle during asymmetric neuroblast divisions. In MDCKII cells, this complex localizes to the zonula occludens (tight junctions) and appears to regulate epithelial polarity. However, the in vivo role of this complex during vertebrate embryogenesis is not known, due to the lack of relevant mutations. RESULTS: We have positionally cloned the zebrafish heart and soul (has) mutation, which affects the morphogenesis of several embryonic tissues, and show that it encodes atypical protein kinase C lambda (aPKC lambda). We find that loss of aPKC lambda affects the formation and maintenance of the zonula adherens in the polarized epithelia of the retina, neural tube, and digestive tract, leading to novel phenotypes, such as the formation of multiple lumens in the developing intestine. In addition, has mutants display defects in gut looping and endodermal organ morphogenesis that appear to be independent of the defects in epithelial polarity. Finally, we show that loss of aPKC lambda leads to defects in spindle orientation during progenitor cell divisions in the neural retina. CONCLUSIONS: Our results show that aPKC lambda is required for the formation and maintenance of the zonula adherens during early epithelial development in vertebrates and demonstrate a previously undescribed yet critical role for this protein in organ morphogenesis. Furthermore, our studies identify the first genetic locus regulating the orientation of cell division in vertebrates.  相似文献   

7.
BACKGROUND: aPKC and PAR-1 are required for cell polarity in various contexts. In mammalian epithelial cells, aPKC localizes at tight junctions (TJs) and plays an indispensable role in the development of asymmetric intercellular junctions essential for the establishment and maintenance of apicobasal polarity. On the other hand, one of the mammalian PAR-1 kinases, PAR-1b/EMK1/MARK2, localizes to the lateral membrane in a complimentary manner with aPKC, but little is known about its role in apicobasal polarity of epithelial cells as well as its functional relationship with aPKC. RESULTS: We demonstrate that PAR-1b is essential for the asymmetric development of membrane domains of polarized MDCK cells. Nonetheless, it is not required for the junctional localization of aPKC nor the formation of TJs, suggesting that PAR-1b works downstream of aPKC during epithelial cell polarization. On the other hand, aPKC phosphorylates threonine 595 of PAR-1b and enhances its binding with 14-3-3/PAR-5. In polarized MDCK cells, T595 phosphorylation and 14-3-3 binding are observed only in the soluble form of PAR-1b, and okadaic acid treatment induces T595-dependent dissociation of PAR-1b from the lateral membrane. Furthermore, T595A mutation induces not only PAR-1b leakage into the apical membrane, but also abnormal development of membrane domains. These results suggest that in polarized epithelial cells, aPKC phosphorylates PAR-1b at TJs, and in cooperation with 14-3-3, promotes the dissociation of PAR-1b from the lateral membrane to regulate PAR-1b activity for the membrane domain development. CONCLUSIONS: These results suggest that mammalian aPKC functions upstream of PAR-1b in both the establishment and maintenance of epithelial cell polarity.  相似文献   

8.
PAR-3 is a scaffold-like PDZ-containing protein that forms a complex with PAR-6 and atypical protein kinase C (PAR-3-atypical protein kinase C-PAR-6 complex) and contributes to the establishment of cell polarity in a wide variety of biological contexts. In mammalian epithelial cells, it localizes to tight junctions, the most apical end of epithelial cell-cell junctions, and contributes to the formation of functional tight junctions. However, the mechanism by which PAR-3 localizes to tight junctions and contributes to their formation remains to be clarified. Here we show that the N-terminal conserved region, CR1-(1-86), and the sequence 937-1,024 are required for its recruitment to the most apical side of the cell-cell contact region in epithelial Madin-Darby canine kidney cells. We also show that CR1 self-associates to form an oligomeric complex in vivo and in vitro. Further, overexpression of CR1 in Madin-Darby canine kidney cells disturbs the distribution of atypical protein kinase C and PAR-6 as well as PAR-3 and delays the formation of functional tight junctions. These results support the notion that the CR1-mediated self-association of the PAR-3-containing protein complex plays a role during the formation of functional tight junctions.  相似文献   

9.
Cell polarity is critical for epithelial structure and function. Adherens junctions (AJs) often direct this polarity, but we previously found that Bazooka (Baz) acts upstream of AJs as epithelial polarity is first established in Drosophila. This prompted us to ask how Baz is positioned and how downstream polarity is elaborated. Surprisingly, we found that Baz localizes to an apical domain below its typical binding partners atypical protein kinase C (aPKC) and partitioning defective (PAR)-6 as the Drosophila epithelium first forms. In fact, Baz positioning is independent of aPKC and PAR-6 relying instead on cytoskeletal cues, including an apical scaffold and dynein-mediated basal-to-apical transport. AJ assembly is closely coupled to Baz positioning, whereas aPKC and PAR-6 are positioned separately. This forms a stratified apical domain with Baz and AJs localizing basal to aPKC and PAR-6, and we identify specific mechanisms that keep these proteins apart. These results reveal key steps in the assembly of the apical domain in Drosophila.  相似文献   

10.
Polarity complex proteins   总被引:2,自引:0,他引:2  
The formation of functional epithelial tissues involves the coordinated action of several protein complexes, which together produce a cell polarity axis and develop cell-cell junctions. During the last decade, the notion of polarity complexes emerged as the result of genetic studies in which a set of genes was discovered first in Caenorhabditis elegans and then in Drosophila melanogaster. In epithelial cells, these complexes are responsible for the development of the apico-basal axis and for the construction and maintenance of apical junctions. In this review, we focus on apical polarity complexes, namely the PAR3/PAR6/aPKC complex and the CRUMBS/PALS1/PATJ complex, which are conserved between species and along with a lateral complex, the SCRIBBLE/DLG/LGL complex, are crucial to the formation of apical junctions such as tight junctions in mammalian epithelial cells. The exact mechanisms underlying their tight junction construction and maintenance activities are poorly understood, and it is proposed to focus in this review on establishing how these apical polarity complexes might regulate epithelial cell morphogenesis and functions. In particular, we will present the latest findings on how these complexes regulate epithelial homeostasis.  相似文献   

11.
p0071, a member of the armadillo protein family, localizes to both adherens junctions and desmosomes in epithelial cells and exhibits homology to the adherens junction protein p120 and the desmosomal protein plakophilin-1. p0071 is also present at dermal microvascular endothelial intercellular junctions and colocalizes with VE-cadherin, an endothelium-specific cadherin that associates with both actin and intermediate filament networks. To define the role of p0071 in junction assembly, p0071 was tested for interactions with other components of the endothelial junctional complex. In transient expression assays, p0071 colocalized with and formed complexes with both VE-cadherin and desmoplakin. Deletion analysis using the yeast two-hybrid system revealed that the armadillo repeat domain of p0071 bound directly to VE-cadherin. Site-directed mutagenesis experiments demonstrated that p0071 and p120 bound to the same region on the cytoplasmic tail of VE-cadherin and that overexpression of p0071 could displace p120 from intercellular junctions. In contrast to VE-cadherin, desmoplakin was found to associate with the non-armadillo head domain of p0071. Cotransfections and triple-label immunofluorescence analysis revealed that VE-cadherin colocalization with desmoplakin in transfected COS cells required p0071, suggesting that p0071 may couple VE-cadherin to desmoplakin. Based on previous findings that both VE-cadherin and desmoplakin play central roles in vasculogenesis, these new results suggest that p0071 may play an important role in endothelial junction assembly and in the morphogenic events associated with vascular remodeling.  相似文献   

12.
Epithelial cells perform important roles in the formation and function of organs and the genesis of many solid tumors. A distinguishing feature of epithelial cells is their apicobasal polarity and the presence of apical junctions that link cells together. The interacting proteins Par-6 (a PDZ and CRIB domain protein) and aPKC (an atypical protein kinase C) localize apically in fly and mammalian epithelial cells and are important for apicobasal polarity and junction formation. Caenorhabditis elegans PAR-6 and PKC-3/aPKC also localize apically in epithelial cells, but a role for these proteins in polarizing epithelial cells or forming junctions has not been described. Here, we use a targeted protein degradation strategy to remove both maternal and zygotic PAR-6 from C. elegans embryos before epithelial cells are born. We find that PKC-3 does not localize asymmetrically in epithelial cells lacking PAR-6, apical junctions are fragmented, and epithelial cells lose adhesion with one another. Surprisingly, junction proteins still localize apically, indicating that PAR-6 and asymmetric PKC-3 are not needed for epithelial cells to polarize. Thus, whereas the role of PAR-6 in junction formation appears to be widely conserved, PAR-6-independent mechanisms can be used to polarize epithelial cells.  相似文献   

13.
The formation of functional epithelial tissues involves the coordinated action of several protein complexes, which together produce a cell polarity axis and develop cell-cell junctions. During the last decade, the notion of polarity complexes emerged as the result of genetic studies in which a set of genes was discovered first in Caenorhabditis elegans and then in Drosophila melanogaster. In epithelial cells, these complexes are responsible for the development of the apico-basal axis and for the construction and maintenance of apical junctions. In this review, we focus on apical polarity complexes, namely the PAR3/PAR6/aPKC complex and the CRUMBS/PALS1/PATJ complex, which are conserved between species and along with a lateral complex, the SCRIBBLE/DLG/LGL complex, are crucial to the formation of apical junctions such as tight junctions in mammalian epithelial cells. The exact mechanisms underlying their tight junction construction and maintenance activities are poorly understood, and it is proposed to focus in this review on establishing how these apical polarity complexes might regulate epithelial cell morphogenesis and functions. In particular, we will present the latest findings on how these complexes regulate epithelial homeostasis.  相似文献   

14.
PAR-3 (partitioning-defective) is a scaffold-like PDZ (postsynaptic density-95/discs large/zonula occludens-1) domain-containing protein that forms a complex with PAR-6 and atypical PKC, localizes to tight junctions, and contributes to the formation of functional tight junctions. There are several alternatively spliced isoforms of PAR-3, although their physiological significance remains unknown. In this study, we show that one of the major isoforms of PAR-3, sPAR-3, is predominantly expressed in the Caco-2 cells derived from colon carcinoma and is used as a model to investigate the events involved in the epithelial cell differentiation and cell polarity development. During the polarization of Caco-2 cells, the expression of PAR-3 increases as do those of other cell-cell junction proteins, whereas the expression of sPAR-3 decreases. Biochemical characterization revealed that sPAR-3 associates with atypical PKC, as does PAR-3. On the other hand, immunofluorescence microscopy revealed that sPAR-3 does not concentrate at the cell-cell contact region in fully polarized cells, whereas it concentrates at premature cell-cell junctions. This makes a contrast to PAR-3, which concentrates at tight junctions in fully polarized cells. These results provide evidence suggesting the difference in the role between sPAR-3 and PAR-3 in epithelial cells.  相似文献   

15.
The PAR-3/PAR-6/aPKC complex is required to establish polarity in many different cell types, including the C. elegans zygote and epithelial and neuronal cells in Drosophila and mammals. In each context, the components of this complex display a mutually dependent asymmetric cortical localization. PAR-6 is a direct effector of Rho family GTPases and binds to and regulates aPKC. Mammalian PAR-3 (mPar3) can associate with transmembrane proteins and may link the complex to the membrane, but this can account for only part of the requirement for this protein in the complex. Here we investigate the function of a novel conserved domain, CR1, of PAR-3 using computational, biochemical, and genetic approaches. Sequence-structure comparison by FUGUE predicts that CR1 has the same structural fold as a bacterial oligomerization domain. We show that CR1 of the Drosophila homolog, Bazooka (BAZ), mediates oligomerization in vitro and in vivo. Furthermore, deletion of CR1 disrupts BAZ localization in both epithelial cells and the germline and strongly impairs BAZ function in epithelial polarity. These results indicate that this domain is important for the localization and activity of the PAR-3/PAR6/aPKC complex and define a new role for PAR-3 in assembling higher order protein complexes.  相似文献   

16.
Cell polarity is fundamental to differentiation and function of most cells. Studies in mammalian epithelial cells have revealed that the establishment and maintenance of cell polarity depends upon cell adhesion, signaling networks, the cytoskeleton, and protein transport. Atypical protein kinase C (PKC) isotypes PKCζ and PKCλ have been implicated in signaling through lipid metabolites including phosphatidylinositol 3-phosphates, but their physiological role remains elusive. In the present study we report the identification of a protein, ASIP (atypical PKC isotype–specific interacting protein), that binds to aPKCs, and show that it colocalizes with PKCλ to the cell junctional complex in cultured epithelial MDCKII cells and rat intestinal epithelia. In addition, immunoelectron microscopy revealed that ASIP localizes to tight junctions in intestinal epithelial cells. Furthermore, ASIP shows significant sequence similarity to Caenorhabditis elegans PAR-3. PAR-3 protein is localized to the anterior periphery of the one-cell embryo, and is required for the establishment of cell polarity in early embryos. ASIP and PAR-3 share three PDZ domains, and can both bind to aPKCs. Taken together, our results suggest a role for a protein complex containing ASIP and aPKC in the establishment and/or maintenance of epithelial cell polarity. The evolutionary conservation of the protein complex and its asymmetric distribution in polarized cells from worm embryo to mammalian-differentiated cells may mean that the complex functions generally in the organization of cellular asymmetry.  相似文献   

17.
The establishment and maintenance of cellular polarity are critical for the development of multicellular organisms. PAR (partitioning-defective) proteins were identified in Caenorhabditis elegans as determinants of asymmetric cell division and polarized cell growth. Recently, vertebrate orthologues of two of these proteins, ASIP/PAR-3 and PAR-6, were found to form a signalling complex with the small GTPases Cdc42/Rac1 and with atypical protein kinase C (PKC). Here we show that ASIP/PAR-3 associates with the tight-junction-associated protein junctional adhesion molecule (JAM) in vitro and in vivo. No binding was observed with claudin-1, -4 or -5. In fibroblasts and CHO cells overexpressing JAM, endogenous ASIP is recruited to JAM at sites of cell-cell contact. Over expression of truncated JAM lacking the extracellular part disrupts ASIP/PAR-3 localization at intercellular junctions and delays ASIP/PAR-3 recruitment to newly formed cell junctions. During junction formation, JAM appears early in primordial forms of junctions. Our data suggest that the ASIP/PAR-3-aPKC complex is tethered to tight junctions via its association with JAM, indicating a potential role for JAM in the generation of cell polarity in epithelial cells.  相似文献   

18.
To remodel endothelial cell-cell adhesion, inflammatory cytokine- and angiogenic growth factor-induced signals impinge on the vascular endothelial cadherin (VE-cadherin) complex, the central component of endothelial adherens junctions. This study demonstrates that junction remodeling takes place at a molecularly and phenotypically distinct subset of VE-cadherin adhesions, defined here as focal adherens junctions (FAJs). FAJs are attached to radial F-actin bundles and marked by the mechanosensory protein Vinculin. We show that endothelial hormones vascular endothelial growth factor, tumor necrosis factor α, and most prominently thrombin induced the transformation of stable junctions into FAJs. The actin cytoskeleton generated pulling forces specifically on FAJs, and inhibition of Rho-Rock-actomyosin contractility prevented the formation of FAJs and junction remodeling. FAJs formed normally in cells expressing a Vinculin binding-deficient mutant of α-catenin, showing that Vinculin recruitment is not required for adherens junction formation. Comparing Vinculin-devoid FAJs to wild-type FAJs revealed that Vinculin protects VE-cadherin junctions from opening during their force-dependent remodeling. These findings implicate Vinculin-dependent cadherin mechanosensing in endothelial processes such as leukocyte extravasation and angiogenesis.  相似文献   

19.
The PAR-3-atypical protein kinase C (aPKC)-PAR-6 complex has been implicated in the development of apicobasal polarity and the formation of tight junctions (TJs) in vertebrate epithelial cells. It is recruited by junctional adhesion molecule A (JAM-A) to primordial junctions where aPKC is activated by Rho family small guanosine triphosphatases. In this paper, we show that aPKC can interact directly with JAM-A in a PAR-3-independent manner. Upon recruitment to primordial junctions, aPKC phosphorylates JAM-A at S285 to promote the maturation of immature cell-cell contacts. In fully polarized cells, S285-phosphorylated JAM-A is localized exclusively at the TJs, and S285 phosphorylation of JAM-A is required for the development of a functional epithelial barrier. Protein phosphatase 2A dephosphorylates JAM-A at S285, suggesting that it antagonizes the activity of aPKC. Expression of nonphosphorylatable JAM-A/S285A interferes with single lumen specification during cyst development in three-dimensional culture. Our data suggest that aPKC phosphorylates JAM-A at S285 to regulate cell-cell contact maturation, TJ formation, and single lumen specification.  相似文献   

20.
In epithelia, cells are arranged in an orderly pattern with a defined orientation and shape. Cadherin containing apical adherens junctions (AJs) and the associated actomyosin cytoskeleton likely contribute to epithelial cell shape by providing apical tension. The Rho guanosine triphosphatases are well known regulators of cell junction formation, maintenance, and function. Specifically, Rho promotes actomyosin activity and cell contractility; however, what controls and localizes this Rho activity as epithelia remodel is unresolved. Using mosaic clonal analysis in the Drosophila melanogaster pupal eye, we find that Cdc42 is critical for limiting apical cell tension by antagonizing Rho activity at AJs. Cdc42 localizes Par6–atypical protein kinase C (aPKC) to AJs, where this complex limits Rho1 activity and thus actomyosin contractility, independent of its effects on Wiskott-Aldrich syndrome protein and p21-activated kinase. Thus, in addition to its role in the establishment and maintenance of apical–basal polarity in forming epithelia, the Cdc42–Par6–aPKC polarity complex is required to limit Rho activity at AJs and thus modulate apical tension so as to shape the final epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号