首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《The Journal of cell biology》1992,118(6):1501-1510
Thrombin stimulates cultured endothelial cells (EC) to secrete stored von Willebrand factor (vWF), but the signal transduction pathways are poorly defined. Thrombin is known to elevate the concentration of intracellular calcium ([Ca2+]i) and to activate protein kinase C (PKC) in EC. Since both calcium ionophores and phorbol esters release vWF, both second messenger pathways have been postulated to participate in vWF secretion in response to naturally occurring agonists. We find that in intact human EC, vWF secretion stimulated by either thrombin or by a thrombin receptor activating peptide, TR(42-55), can be correlated with agonist-induced elevations of [Ca2+]i. Further evidence implicating calcium in the signal transduction pathway is suggested by the finding that MAPTAM, a cell-permeant calcium chelator, in combination with the extracellular calcium chelator EGTA, can inhibit thrombin-stimulated secretion. In contrast, the observation that staurosporine (a pharmacological inhibitor of PKC) blocks phorbol ester- but not thrombin-stimulated secretion provides evidence against PKC-mediated signal transduction. To examine further the signal transduction pathway initiated by thrombin, we developed novel conditions for minimal permeabilization of EC with saponin (4-8 micrograms/ml for 5-15 min at 37 degrees C) which allow the introduction of small extracellular molecules without the loss of large intracellular proteins and which retain thrombin-stimulated secretion. These minimally permeabilized cells secrete vWF in response to exogenous calcium, and EGTA blocks thrombin-induced secretion. Moreover, in these cells, thrombin- stimulated secretion is blocked by a calmodulin-binding inhibitory peptide but not by a PKC inhibitory peptide. Taken together, these findings demonstrate that thrombin-stimulated vWF secretion is transduced by a rise in [Ca2+]i and provide the first evidence for the role of calmodulin in this process.  相似文献   

2.
The effects of protein kinase C (PKC) activation on the cytoplasmic free Ca2+ concentration ([Ca2+]i) were studied in clonal insulin-producing RINm5F cells, using the fluorescent Ca2+ indicators quin-2 and fura-2. Both under basal and stimulatory conditions PKC activation lowered [Ca2+]i in these cells by promoting an active extrusion of Ca2+ to the extracellular space. PKC activation therefore assists insulin-producing cells in recovery from raised [Ca2+]i. Such an effect might be part of the signal regulating the insulin secretory process.  相似文献   

3.
Li HW  Geng QM  Zhang YY  Han QD 《生理学报》1998,50(3):349-354
本文探讨了α1a,α1b,α1d三种亚型肾上腺素受体激动时细胞内Ca62+浓度升高的信号转导途径。在稳定表达三亚型α1-AR的HEK293细胞2系中,用fura-2方法细胞内Ca^2+信号强弱的变化。结果显示,百日咳毒素对去甲肾上腺素激动三亚型α1-AR而引起的「Ca^2+」i升高无影响,U-73122和PMA明显抑制「Ca^2+」i升高.  相似文献   

4.
Interaction of Jurkat T-lymphocytes with two extracellular matrix (ECM) proteins of the basement membrane, laminin or collagen type IV, combined with poly-L-lysine resulted in a strong adhesion, a highly increased intracellular Ca2+-concentration ([Ca2]i), as compared to cells on laminin or collagen type IV alone and in spreading of the cells. The strong adhesion was independent of an increase in [Ca2+]i, was not mediated by a beta1-integrin, and was due to charge interaction between the positively charged polyaminoacid and the negatively charged cell surface. The latter was confirmed by substitution of poly-L-lysine by other positively charged polyaminoacids. In contrast, Ca+-signalling and spreading of the cells adhering to laminin or collagen type IV combined with poly-L-lysine was completely blocked by anti-beta1 mAb. However, spreading of the cells was independent of an increase in [Ca2+]i suggesting divergent signal transduction pathways leading to Ca2+-signalling and spreading of the cells. We elucidated these signal transduction pathways by inhibition of key enzymes involved. The tyrosine kinase inhibitor genistein blocked Ca2+-signalling as well as spreading, whereas inhibitors of PKC (calphostin C, GF109203x), PLCgamma (U73122) and PLA2 (bromophenacyl-bromide (BPB), 3-[4-octadecyl)benzoyl]acrylic acid (OBAA)) selectively blocked spreading of the cells.  相似文献   

5.
The signal transduction systems of the neuropeptide Y (NPY) Y1 receptor were studied in SK-N-MC human neuroblastoma cells. NPY induced an increase in intracellular calcium ion concentration ([Ca2+]i) and inhibition of forskolin-stimulated cyclic AMP accumulation, which were mediated through Y1 receptors. One-min preincubation of cells with phorbol 12-myristate 13-acetate (PMA) inhibited both signal transductions dose-dependently, but its effect on [Ca2+]i was about 100-fold more potent than that on cyclic AMP. PMA had no effect on [125I]BH-NPY binding in SK-N-MC cells and hardly inhibited the endothelin-1-induced increase in [Ca2+]i. Pertussis toxin also inhibited the NPY-induced [Ca2+]i increase 30-fold more effectively than the NPY-mediated inhibition of cyclic AMP accumulation. These results indicate that Y1 receptors in SK-N-MC cells couple to two signal transduction systems that have different sensitivities to phorbol ester and pertussis toxin treatments.  相似文献   

6.
内皮素对培养心肌细胞内游离钙浓度的作用   总被引:5,自引:0,他引:5  
Wang TH  Wu B  Zhu XN  Pan JY 《生理学报》1999,51(4):391-396
实验用培养新生SD大鼠心室肌细胞,以Fura-2/AM荧光指示剂负载检测收肌细胞内游离钙浓度(「Ca^2+」)的变化,探讨内皮素-1(ET-1)对「Ca^2+」i的作用及其机制。结果显示:ET-1引起心肌细胞「Ca^2+」i升高有两个时相,瞬时相持续相。ET-1诱导的瞬时相「Ca^2+」i升高呈浓度依赖性,预先用ETA特异性受阻断剂BQ123处理,可阻断ET-1引起的「Ca^2+」i升高,揭示上述  相似文献   

7.
Resting T lymphocytes proliferate in response to a combination of a calcium ionophore and a phorbol ester. This observation suggests that an increase in intracellular calcium free ion concentration [Ca2+]i and activation of protein kinase C (PKC) are sufficient signaling events for the initiation of T cell proliferation. In contrast, an accessory cell-generated costimulatory signal, acting independently of the rise in [Ca2+]i and PKC activation, is required for Ag-induced proliferation of type I T cell clones. We now report that this costimulatory signal is unexpectedly also being delivered via a cell-cell interaction during the response to ionomycin and phorbol ester. In the absence of this signal (at limiting cell numbers), T cells fail to divide. We also demonstrate that proliferation in response to immobilized anti-CD3 mAb requires the cell-cell interaction. These results suggest a model of T cell stimulation in which activation of a costimulatory signaling pathway is important in the regulation of the IL-2 gene, and only in the presence of this (third) signal can an increase in [Ca2+]i and PKC activity induce T cell proliferation. Such a model predicts that IL-2-dependent expansion of T cell clones in vivo in response to Ag receptor occupancy requires the delivery of an independent accessory cell-derived co-stimulatory signal.  相似文献   

8.
Progenitor cells of the valves and membranous septa of the vertebrate heart are formed by transformation of a specific population of endothelial cells into mesenchyme. Previous studies have shown that this epithelial-mesenchymal cell transformation is mediated by a signal produced by the myocardium of the atrioventricular (AV) canal and transferred across the extracellular matrix. Data are presented here that transforming growth factor beta (TGF beta 1 or TGF beta 2), in combination with an explant of ventricular myocardium, will produce an epithelial-mesenchymal transformation by cultured AV canal endothelial cells in vitro. Alone, neither component is capable of producing this effect. The factor provided by the ventricular explant cannot be substituted by either epidermal growth factor or basic fibroblast growth factor. Further experiments show that an antibody that blocks TGF beta activity is effective in preventing the epithelial-mesenchymal cell transformation normally produced by AV canal myocardium. Control antibodies are without effect. By immunological criteria, a member of the TGF beta family of molecules can be demonstrated in the chicken embryo and heart at the time overt valvular formation begins. Together, these data show that TGF beta 1 can produce mesenchymal cell formation in vitro and provide evidence that a member of the TGF beta family is present and plays a role in the process of epithelial-mesenchymal cell transformation in the embryonic heart.  相似文献   

9.
The role of protein kinase C (PKC) in modulating platelet activation has been examined in platelets pre-incubated with either the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) or the non-specific protein kinase inhibitor, staurosporine. In order to determine where in the signal transduction pathway PKC is exerting its effect platelets were activated either with a receptor-operated stimulus platelet activating factor (PAF) or by direct elevation of [Ca2+]i (ionomycin) or with arachidonic acid which is converted into thromboxane B2 (TxB2). In PAF-stimulated platelets activation of PKC inhibited both [Ca2+]i elevation and TxB2 generation but had no effect on 5-hydroxytryptamine (5-HT) release whilst staurosporine increased the duration of [Ca2+]i elevation and potentiated TxB2 generation but inhibited 5-HT release. In ionomycin-stimulated platelets modulation of PKC had no effect on [Ca2+]i elevation but in contrast to PAF-stimulated platelets PKC activation caused potentiation of TxB2 generation and 5-HT release whilst inhibition of PKC caused inhibition of TxB2 generation and 5-HT release. Modulation of PKC did not affect arachidonic acid-induced TxB2 generation. These findings suggest that in receptor activated platelets endogenously activated PKC is exerting a negative feedback role, however, when [Ca2+]i elevation is not modified by PKC activation or inhibition (such as in ionomycin stimulated platelets) the relationship between the state of PKC activation and subsequent platelet functional responses corresponds more closely. The findings from this study suggest a different relationship between PKC and TxB2 generation than between PKC and dense granule release in PAF-stimulated platelets.  相似文献   

10.
11.
The signal transduction mechanisms involved in the regulation of phagocytosis are largely unknown. We have recently shown that in neutrophils, when IgG-mediated phagocytosis is stimulated by formyl-methionyl-leucyl-phenyl-alanine (fMLP), the enhanced ingestion is dependent on the increase in [Ca2+]i which results from ligation of Fc receptors by the IgG-coated target (Rosales, C., and Brown, E. (1991) J. Immunol. 146, 3937-3944). Now, we have studied the mechanism by which this rise in [Ca2+]i occurs. Aggregated IgG, the monoclonal antibody 3G8 (which recognizes Fc receptor type III), and insoluble immune complexes caused an increase in [Ca2+]i. The rise in [Ca2+]i induced by Fc receptor ligation was resistant to pertussis toxin. In contrast, fMLP induced a rise in [Ca2+]i which was inhibited by pertussis toxin. fMLP-induced [Ca2+]i was accompanied by an accumulation of inositol 1,4,5-trisphosphate (IP3) which peaked by 15 s, and which was also abolished by pertussis toxin. IP3 accumulation after aggregated IgG, 3G8, or insoluble immune complexes was much less than after fMLP. Unlike [Ca2+]i rise induced by Fc receptor ligation, this small increase in IP3 was inhibited by pertussis toxin. These data demonstrated that the [Ca2+]i increase induced by Fc receptor ligation is not mediated by IP3. Immediate pretreatment of human polymorphonuclear neutrophils with optimal doses of fMLP also reduced subsequent increase in [Ca2+]i rise from thapsigargin, a sesquiterpene lactone tumor promoter that releases intracellular Ca2+ from IP3-sensitive stores without IP3 turnover. Similarly, to its effects on thapsigargin, fMLP inhibited the [Ca2+]i rise upon subsequent immune complex binding. Pretreatment of cells with immune complexes also prevented subsequent [Ca2+]i rise from thapsigargin and fMLP. These data demonstrate that IgG Fc receptor ligation and fMLP activation of human polymorphonuclear neutrophils use distinct signal transduction mechanisms to release Ca2+ from the same thapsigargin-sensitive intracellular pool. In contrast to fMLP, signal transduction for increased [Ca2+]i after Fc receptor stimulation does not involve a pertussis toxin-sensitive G protein, and is independent of IP3.  相似文献   

12.
There are two known phosphorylation-mediated inactivation mechanisms for TRPC3 channels. Protein kinase G (PKG) inactivates TRPC3 by direct phosphorylation on Thr-11 and Ser-263 of the TRPC3 proteins, and protein kinase C (PKC) inactivates TRPC3 by phosphorylation on Ser-712. In the present study, we explored the relationship between these two inactivation mechanisms of TRPC3. HEK cells were first stably transfected with a PKG-expressing construct and then transiently transfected with a TRPC3-expressing construct. Addition of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analog of diacylglycerol (DAG), elicited a TRPC3-mediated [Ca2+]i rise in these cells. This OAG-induced rise in [Ca2+]i could be inhibited by phorbol 12-myristate 13-acetate (PMA), an agonist for PKC, in a dose-dependent manner. Importantly, point mutations at two PKG phosphorylation sites (T11A-S263Q) of TRPC3 markedly reduced the PMA inhibition. Furthermore, inhibition of PKG activity by KT5823 (1 microM) or H8 (10 microM) greatly reduced the PMA inhibition of TRPC3. These data strongly suggest that the inhibitory action of PKC on TRPC3 is partly mediated through PKG in these PKG-overexpressing cells. The importance of this scheme was also tested in vascular endothelial cells, in which PKG plays a pivotal functional role. In these cells, OAG-induced [Ca2+]i rise was inhibited by PMA, which activates PKC, and by 8-BrcGMP and S-nitroso-N-acetylpenicillamine (SNAP), both of which activate PKG. Importantly, the PMA inhibition on OAG-induced [Ca2+]i rise was significantly reduced by PKG inhibitor KT5823 (1 microM) or DT-3 (500 nM), suggesting an important role of PKG in the PMA-induced inhibition of TRPC channels in native endothelial cells.  相似文献   

13.
Human cultured mast cells (HCMC) release histamine and sulfidoleukotrienes (LTs) upon IgE-FcepsilonRI-mediated mast cell activation. We analyzed the Ca2+ and PKC signaling in HCMC and compared it to that in rodent mast cells. In HCMC, after IgE-mediated stimulation, an elevation of [Ca2+]i and PKC translocation to the membrane fraction was observed. As concerns Ca2+ signaling, 1) IgE-mediated histamine and LTs release was abolished after Ca2+ depletion, and the reconstitution of Ca2+ recovered the release of histamine and LTs. As regards PKC signaling, 1) staurosporine inhibited IgE-mediated mediator release. 2) PKC-downregulated mast cells did not release histamine and LTs. A23187 and PMA synergistically potentiated the activation of extracellular-regulated kinase and synergistically induced histamine and LTs release. These results demonstrated that HCMC might be useful for analysis of the signal transduction pathway for mediator release, such as histamine and LTs.  相似文献   

14.
The adhesion of cancer cells to the endothelium during the metastatic process involves the interaction of specific cell-cell adhesion receptors on the cell surface. E-selectin on endothelial cells and sialyl Lewis X carbohydrate component on tumor cells are mainly implicated in the adhesion of colon carcinoma cells to the endothelium of target organ. In this paper we show that binding of E-selectin to T84 colon tumor cells causes approximately a twofold increase in intracellular calcium concentration. In particular, using two inhibitors of receptor operated calcium channels, CAI and SK&F 96365, we present evidences that the augmentation in cytoplasmic calcium originates from ionic influx from extracellular sources. Furthermore, we demonstrated that modulation of [Ca2+]i by engagement of E-selectin receptor starts signal transduction pathways that affect cell spreading, tyrosine phosphorylation signaling, and cancer cell motility.  相似文献   

15.
《The Journal of cell biology》1988,107(6):2533-2539
A broad range of membrane functions, including endocytosis and exocytosis, are strongly inhibited during mitosis. The underlying mechanisms are unclear, however, but will probably be important in relation to the mitotic cycle and the regulation of surface phenomena generally. A major unanswered question is whether membrane signal transduction is altered during mitosis; suppression of an intracellular calcium [( Ca2+]i) transient could inhibit exocytosis; [Ca2+]i elevation could disassemble the mitotic spindle. Activation of the histamine H1 receptor interphase in HeLa cells is shown here by Indo-1 fluorescence to produce a transient elevation of [Ca2+]i. The [Ca2+]i transient consists of an initial sharp rise that is at least partially dependent on intracellular calcium followed by an elevated plateau that is absolutely dependent on extracellular calcium. The [Ca2+]i transient is completely suppressed by preincubation with the tumor promoter, phorbol myristate acetate, but is unaffected by preincubation with pertussis toxin (islet-activating protein). In mitotic (metaphase- arrested) HeLa cells, the [Ca2+]i transient is largely limited to the initial peak. Measurement of 45Ca2+ uptake shows that it is stimulated by histamine in interphase cells, but not in mitotics. We conclude that the histamine-stimulated generation of the second messenger, [Ca2+]i, in mitotic cells is limited by failure to activate a sustained calcium influx. The initial phase of calcium mobilization from intracellular stores is comparable to that in interphase cells. Hormone signal transduction thus appears to be altered during mitosis.  相似文献   

16.
Isopeptides of the newly discovered peptide family, endothelins (ET), caused a concentration-dependent increase in intracellular free [Ca2+] ([Ca2+]i) in human glomerular mesangial cells. ET isopeptides and sarafotoxin S6b caused transient and sustained [Ca2+]i waveforms which resulted from mobilization of intracellular Ca2+ stores and from Ca2+ influx through a dihydropyridine-insensitive Ca2+ channel. Ca2+ signaling evoked by ET isopeptides underwent a marked adaptive, desensitization response. Although activation of protein kinase C attenuated ET-induced Ca2+ signaling, desensitization by ET isopeptides was independent of protein kinase C. High concentrations of ET-1 and ET-2 also caused oscillations of [Ca2+]i that partially depended on extracellular Ca2+. These results suggest that an increase in [Ca2+]i constitutes a common pathway of signal transduction for the ET peptide family.  相似文献   

17.
Receptor-activated cytoplasmic calcium (Ca2+) oscillations have been investigated in single pancreatic acinar cells by microfluorimetry (Fura-2 as indicator). At submaximal concentrations of the agonists acetylcholine (ACh) and cholecystokinin octapeptide (CCK-8), both give rise to oscillatory changes in the cytosolic free calcium concentration ([Ca2+]i). The patterns of oscillations are markedly and consistently different for each of these two agonists. The ACh induced oscillations are superimposed upon a median elevation in background [Ca2+]i. The CCK-8 induced oscillations are of longer duration with [Ca2+]i returning to prestimulus levels between the discrete spikes. The ACh induced oscillations are rapidly abolished upon removal of extracellular Ca2+ while the CCK-8 induced oscillations persist for many minutes in the absence of external Ca2+. The CCK-8, but not the ACh, induced oscillations are increased in duration by the protein kinase C (PKC) inhibitor staurosporine and abolished by the PKC activating phorbol ester PMA. It is clear that CCK-8 and ACh do not activate receptor transduction mechanisms in an identical manner to generate oscillating [Ca2+]i signals.  相似文献   

18.
《The Journal of cell biology》1993,120(6):1491-1499
Thrombin, a potent activator of cellular responses, proteolytically cleaves, and thereby activates its receptor. In the present study, we compared the effects of the thrombin receptor 14-amino acid peptide (TRP-14; SFLLRNPNDKYEPF), which comprises the NH2 terminus after cleavage of the thrombin receptor, and of the native alpha-thrombin on endothelial monolayer permeability. Addition of TRP-14 (1-200 microM) to bovine pulmonary artery endothelial cells increased [Ca2+]i in a dose-dependent manner. The peak increase in [Ca2+]i in response to 100 microM TRP-14 or 0.1 microM alpha-thrombin was similar (i.e., 931 +/- 74 nM and 1032 +/- 80 nM, respectively), which was followed by a slow decrease with t1/2 values of 0.73 and 0.61 min, respectively. Extracellular Ca2+ chelation with 5 mM EGTA abolished the sustained increases in [Ca2+]i induced by either TRP-14 or alpha-thrombin. alpha- thrombin (0.1 microM) increased transendothelial [125I]albumin permeability, whereas TRP-14 (1-100 microM) had no effect. Coincubation of 100 microM TRP-14 with 1 microM DIP-alpha-thrombin also did not increase permeability over control values. Stimulation of BPAEC with 0.1 microM alpha-thrombin induced translocation of protein kinase C (PKC) from the cytosol to the plasma membrane indicative of PKC activation, whereas TRP-14 had no effect at any concentration. TRP-14 at 100 microM desensitized BPAEC to thrombin-induced increases in [Ca2+]i and transendothelial permeability. The Ca2+ desensitization was reversed after approximately 60 min, and this recovery paralleled the recovery of the permeability response. These findings indicate that the TRP-14-induced Ca2+ mobilization in the absence of PKC activation is insufficient to increase endothelial permeability. In contrast, the increase in endothelial permeability after alpha-thrombin occurred in conjunction with Ca2+ mobilization as well as PKC activation. TRP-14 pretreatment prevented the alpha-thrombin-induced increase in endothelial permeability secondary to desensitization of the Ca2+ signal. The results suggest that combined cytosolic Ca2+ mobilization mediated by TRP-14 and PKC activation mediated by a TRP-14-independent pathway are dual signals responsible for the thrombin-induced increase in vascular endothelial permeability.  相似文献   

19.
The early chick heart tube consists of myocardium and endothelium separated by a myocardially derived basement membrane (MBM). As development proceeds, the endothelium undergoes a transition into mesenchyme in a regionally specific manner; only the atrioventricular (AV) and outflow tract, but not the ventricular endothelium, is transformed into mesenchyme, the progenitor of heart septa and valves. Recent experiments have shown that an EDTA extract of MBM can initiate AV endothelium to form mesenchyme in an in vitro collagen gel culture system. Two-dimensional gel electrophoresis of AV region EDTA extracts showed potentially three isoelectric forms of fibronectin (Fn), while extracts from ventricle contained only two forms. The purpose of the present study was to further investigate the significance of these regional differences by testing of specific myocardial regions (AV vs ventricle) for their ability to induce endothelium to form mesenchyme in vitro, and to immunohistochemically determine if a regionally specific distribution of Fn exists in the MBM that can be correlated with previous electrophoretic data. Embryonic heart regions cultured on three-dimensional collagen gels showed that AV endothelium could only form mesenchyme if cocultured with AV myocardium. Coculture with ventricular myocardial explants did not initiate differentiation of AV endothelium. In contrast, ventricular endothelial cells did not form mesenchyme when cocultured with AV or ventricle myocardium. Immunohistochemical localization of Fn revealed three distinct morphological patterns of distribution in the AV-MBM, i.e., an intense lamina densa staining, diffuse staining in fibrils, and as particles. The Fn localized in particles (0.1 to 0.5 micron in diameter) appeared as a gradient of decreasing concentration extending from the myocardium toward the endothelium. In contrast, no particulate Fn staining was observed in the ventricular region. EDTA extraction selectively depleted the particulate form of Fn. Previous work has shown that this extract, which contains several lower Mr proteins in addition to Fn, is biologically active in initiating mesenchyme formation from AV endothelium in vitro. These results show that a regionally specific interaction of the myocardium with the endothelium is required to initiate the formation of prevalvular mesenchyme. This interaction may be mediated by a multicomponent complex involving Fn and other proteins which appear as a regionally distinct particulate only in areas of endothelial differentiation.  相似文献   

20.
The embryonic vertebrate heart consists of two epithelia: the myocardium and endothelium, separated by the myocardial basement membrane (MBM). The myocardium has been shown to induce endothelial transformation into prevalvular mesenchyme in a temporally and site restricted manner. Previously, we hypothesized that the myocardial-endothelial interaction is mediated in vivo by aggregates of 30-nm particles in the MBM which can be removed by EDTA extraction. These MBM extracts contain fibronectin and other lower Mr proteins and can initiate an epithelial-mesenchymal transition in the AV (atrioventricular canal) endothelium of embryonic chick heart in collagen gel culture. These and other data suggested that the 30-nm multicomponent particles are similar, structurally and compositionally, to multimolecular complexes, termed adherons, secreted by L6 muscle cells in culture. The purpose of this study was to (1) test whether the removal of the 30-nm particles from MBM extracts of embryonic chick hearts would remove the in vitro biological activity and (2) determine if the fractionated MBM extracts can cause AV endothelial cells to follow the same differentiation pathway observed in vivo by monitoring immunohistochemically the cell surface expression of N-CAM. Results showed that centrifugation of extract at 100,000g for 1 hr produced a supernatant fraction that was unable to initiate mesenchyme formation from AV endothelium. However, the resuspended pellet fraction did initiate differentiation of endothelium into mesenchyme. Conditioned medium from L6 skeletal muscle cultures could not substitute for the EDTA extract of embryonic heart. Endothelial cells undergoing the transition to form mesenchyme, both in vivo and in vitro, showed a concomitant decrease in N-CAM staining. This suggested that the pellet-induced formation of migrating cells in the collagen gels is not the result a novel in vitro phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号