首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Originally identified as an antagonist of Ras action, Rap1 exhibits many Ras-independent effects, including a role in signaling pathways initiated by cyclic AMP (cAMP). Since cAMP is a critical mediator of the effects of thyrotropin (TSH) on cell proliferation and differentiation, we examined the regulation of Rap1 by TSH in a continuous line of rat thyroid-like cells. Both cAMP and protein kinase A (PKA) contribute to the regulation of Rap1 activity and signaling by TSH. TSH activates Rap1 through a cAMP-mediated and PKA-independent mechanism. TSH phosphorylates Rap1 in a PKA-dependent manner. Interference with PKA activity blocked phosphorylation but not the activation of Rap1. Rather, PKA inhibitors prolonged Rap1 activation, as did expression of a Rap1A mutant lacking a PKA phosphorylation site. These results indicate that PKA elicits negative feedback regulation on cAMP-stimulated Rap1 activity in some cells. The dual regulation of Rap1 by cAMP and PKA extends to downstream effectors. The ability of TSH to stimulate Akt phosphorylation was markedly enhanced by the expression of activated Rap1A and was repressed in cells expressing a putative dominant-negative Rap1A mutant. Although the expression of activated Rap1A was sufficient to stimulate wortmannin-sensitive Akt phosphorylation, TSH further increased Akt phosphorylation in a phosphatidylinositol 3-kinase- and PKA-dependent manner. The ability of TSH to phosphorylate Akt was impaired in cells expressing a Rap1A mutant that could be activated but not phosphorylated. These findings indicate that dual signals, Rap1 activation and phosphorylation, contribute to TSH-stimulated Akt phosphorylation. Rap1 plays an essential role in cAMP-regulated differentiation. TSH effects on thyroid-specific gene expression, but not its effects on proliferation, were markedly enhanced in cells expressing activated Rap1A and repressed in cells expressing a dominant-negative Rap1A mutant. These findings reveal complex regulation of Rap1 by cAMP including PKA-independent activation and PKA-dependent negative feedback regulation. Both signals appear to be required for TSH signaling to Akt.  相似文献   

2.
Developmental control of cellproliferation is crucial, and abnormal principal cell proliferation maycontribute to cystogenesis in polycystic kidney disease. This studyinvestigates roles of cAMP and its primary effector, cAMP-dependentprotein kinase (protein kinase A; PKA), in control of cellproliferation in filter-grown noncystic (NC) and cystic (CY)-derivedprincipal cell cultures. These cultures had similar cAMP pathwaycharacteristics upstream of PKA subunit distribution but differed inpredicted PKA subtype distribution. Functionally, cultures wereproliferative before polarization, with constitutively higherproliferation in CY cultures. NC cultures achieved levels similar tothose of CY cultures on pharmacological manipulation of cAMP productionor PKA activation or inhibition of PKA subtype I activity. Inhibitionof overall PKA activity, or of PKA subtype II anchoring, diminishedcAMP/PKA-mediated proliferation in NC cultures but had no effect on CYcultures. Polarized CY monolayers remained proliferative, but NCmonolayers lost responsiveness. No large proliferation changes resultedfrom treatments of polarized cultures; however, polarized NC and CY cultures differed in poststimulation handling of PKA catalytic and typeII regulatory subunits. Our results support PKA subtype regulationof prepolarization proliferation in NC principal cells and alteredregulation of PKA in CY cells and suggest that differences at ordownstream of PKA can contribute to altered proliferation in adevelopmental renal disease.

  相似文献   

3.
Cystic kidneys of the C57BL/6J-cpk murine model of polycystic kidney disease show a marked overexpression of the proto-oncogenes c-fos, c-myc, and c-Ki-ras, consistent with an increased rate of cell proliferation and an altered state of differentiation. To determine if cystic cells have increased responsiveness to stimulation with mitogenic agents, quiescent primary cultures from normal and cystic cpk kidneys were treated with fetal bovine serum (FBS), 8-bromo-cAMP (cAMP), or epidermal growth factor (EGF). The level of c-fos induction following stimulation by FBS was found to be dramatically higher in cystic cells than in normal cells; whereas induction by cAMP or EGF was essentially the same in both cell types and much less than that seen in FBS-stimulated cells. To determine if this serum hypersensitivity reflects an increased proliferative state in vivo, c-fos induction was examined in cultures derived from normal kidneys stimulated to regenerate by folic acid-induced acute renal injury. As with cystic kidneys, the folic acid-injured kidneys showed increased c-fos responsiveness to FBS in cell culture. These experiments suggest that cystic and regenerating kidneys have an altered phenotypic state in vivo that is manifested in cell culture by serum hypersensitivity. However, whereas the folic acid-injured kidneys ultimately reestablish normal kidney function, cystic kidneys further progress to renal failure, suggesting that cystic epithelial cells are locked in this altered state of differentiation.  相似文献   

4.
Measurements of membrane capacitance were applied to dissect the cellular mechanisms underlying PKA-dependent and -independent stimulation of insulin secretion by cyclic AMP. Whereas the PKA-independent (Rp-cAMPS-insensitive) component correlated with a rapid increase in membrane capacitance of approximately 80 fF that plateaued within approximately 200 ms, the PKA-dependent component became prominent during depolarizations >450 ms. The PKA-dependent and -independent components of cAMP-stimulated exocytosis differed with regard to cAMP concentration dependence; the K(d) values were 6 and 29 micro M for the PKA-dependent and -independent mechanisms, respectively. The ability of cAMP to elicit exocytosis independently of PKA activation was mimicked by the selective cAMP-GEFII agonist 8CPT-2Me-cAMP. Moreover, treatment of B-cells with antisense oligodeoxynucleotides against cAMP-GEFII resulted in partial (50%) suppression of PKA-independent exocytosis. Surprisingly, B-cells in islets isolated from SUR1-deficient mice (SUR1(-/-) mice) lacked the PKA-independent component of exocytosis. Measurements of insulin release in response to GLP-1 stimulation in isolated islets from SUR1(-/-) mice confirmed the complete loss of the PKA-independent component. This was not attributable to a reduced capacity of GLP-1 to elevate intracellular cAMP but instead associated with the inability of cAMP to stimulate influx of Cl(-) into the granules, a step important for granule priming. We conclude that the role of SUR1 in the B cell extends beyond being a subunit of the plasma membrane K(ATP)-channel and that it also plays an unexpected but important role in the cAMP-dependent regulation of Ca(2+)-induced exocytosis.  相似文献   

5.
Besides its pivotal role in reproduction, the polypeptide hormone prolactin (PRL) has been attributed an immunomodulatory function. Extrapituitary PRL expression is regulated differently from that in the pituitary, due to the use of an alternative promoter. In leukocytes, cAMP is an important regulator of PRL expression. We report that in the human eosinophilic cell line Eol-1, cAMP-induced PRL expression is partially abrogated by two protein kinase A (PKA) inhibitors (H89, PKI) and by the p38 inhibitor SB203580. Phosphorylation of p38 was PKA-independent and could be stimulated by a methylated cAMP analogue, which specifically activates the exchange factor directly activated by cAMP (EPAC). Furthermore, cAMP induced a PKA-dependent phosphorylation of cAMP-responsive element binding protein (CREB). We postulate that cAMP induces PRL expression via two different signalling pathways: a PKA-dependent pathway leading to the phosphorylation of CREB, and a PKA-independent pathway leading to the phosphorylation of p38.  相似文献   

6.
The effects of cyclic AMP (cAMP) on cell proliferation are cell type specific. Although the growth-inhibitory effects of cAMP have been well studied, much less is known regarding how cAMP stimulates proliferation. We report that cAMP stimulates proliferation through both protein kinase A (PKA)-dependent and PKA-independent signaling pathways and that phosphatidylinositol 3-kinase (PI3K) is required for cAMP-stimulated mitogenesis. In cells where cAMP is a mitogen, cAMP-elevating agents stimulate membrane ruffling, Akt phosphorylation, and p70 ribosomal S6 protein kinase (p70s6k) activity. cAMP effects on ruffle formation and Akt were PKA independent but sensitive to wortmannin. In contrast, cAMP-stimulated p70s6k activity was repressed by PKA inhibitors but not by wortmannin or microinjection of the N-terminal SH2 domain of the p85 regulatory subunit of PI3K, indicating that p70s6k and Akt can be regulated independently. Microinjection of highly specific inhibitors of PI3K or Rac1, or treatment with the p70s6k inhibitor rapamycin, impaired cAMP-stimulated DNA synthesis, demonstrating that PKA-dependent and -independent pathways contribute to cAMP-mediated mitogenesis. Direct elevation of PI3K activity through microinjection of an antibody that stimulates PI3K activity or stable expression of membrane-localized p110 was sufficient to confer hormone-independent DNA synthesis when accompanied by elevations in p70s6k activity. These findings indicate that multiple pathways contribute to cAMP-stimulated mitogenesis, only some of which are PKA dependent. Furthermore, they demonstrate that the ability of cAMP to stimulate both p70s6k- and PI3K-dependent pathways is an important facet of cAMP-regulated cell cycle progression.  相似文献   

7.
cAMP stimulates proliferation in many cell types. For many years, cAMP-dependent protein kinase (PKA) represented the only known cAMP effector. PKA, however, does not fully mimic the action of cAMP, indicating the existence of a PKA-independent component. Since cAMP-mediated activation of the G-protein Rap1 and its phosphorylation by PKA are strictly required for the effects of cAMP on mitogenesis, we hypothesized that the Rap1 activator Epac might represent the PKA-independent factor. Here we report that Epac acts synergistically with PKA in cAMP-mediated mitogenesis. We have generated a new dominant negative Epac mutant that revealed that activation of Epac is required for thyroid-stimulating hormone or cAMP stimulation of DNA synthesis. We demonstrate that Epac's action on cAMP-mediated activation of Rap1 and cAMP-mediated mitogenesis depends on the subcellular localization of Epac via its DEP domain. Disruption of the DEP-dependent subcellular targeting of Epac abolished cAMP-Epac-mediated Rap1 activation and thyroid-stimulating hormone-mediated cell proliferation, indicating that an Epac-Rap-PKA signaling unit is critical for the mitogenic action of cAMP.  相似文献   

8.
Cyclic AMP (cAMP) promotes functions of tight junctions in endothelial cells, although its target remains unknown. We showed here that cAMP increased gene expression of claudin-5 and decreased that of claudin-1 in porcine blood-brain-barrier endothelial cells via protein kinase A (PKA)-independent and -dependent pathways, respectively. cAMP also enhanced immunoreactivity of claudin-5 along cell borders and in the cytoplasm, reorganized actin filaments, and altered signals of claudin-5, occludin, ZO-1, and ZO-2 along cell boundaries from zipperlike to linear patterns. In contrast, claudin-1 was detected only in the cytoplasm in a dotlike pattern, and its immunolabeling was reduced by cAMP. Interestingly, 31- and 62-kDa claudin-5 immunoprecipitates in the NP-40-soluble and -insoluble fractions, respectively, were highly phosphorylated on threonine residue(s) upon cAMP treatment. All these changes induced by cAMP, except for claudin-5 expression and its signals in the cytoplasm, were reversed by an inhibitor of PKA, H-89. We also demonstrated that cAMP elevated the barrier function of tight junctions in porcine blood-brain-barrier endothelial cells in PKA-dependent and -independent manners. These findings indicate that both PKA-induced phosphorylation of claudin-5 immunoprecipitates and cAMP-dependent but PKA-independent induction of claudin-5 expression could be involved in promotion of tight-junction function in endothelial cells.  相似文献   

9.
10.
Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN4) channels produce the “funny current,” If, which contributes to spontaneous pacemaking in sinoatrial myocytes (SAMs). The C-terminus of HCN channels inhibits voltage-dependent gating, and cAMP binding relieves this “autoinhibition.” We previously showed 1) that autoinhibition in HCN4 can be relieved in the absence of cAMP in some cellular contexts and 2) that PKA is required for β adrenergic receptor (βAR) signaling to HCN4 in SAMs. Together, these results raise the possibility that native HCN channels in SAMs may be insensitive to direct activation by cAMP. Here, we examined PKA-independent activation of If by cAMP in SAMs. We observed similar robust activation of If by exogenous cAMP and Rp-cAMP (an analog than cannot activate PKA). Thus PKA-dependent βAR-to-HCN signaling does not result from cAMP insensitivity of sinoatrial HCN channels and might instead arise via PKA-dependent limitation of cAMP production and/or cAMP access to HCN channels in SAMs.  相似文献   

11.
The Shaker family potassium channel, Kv1.2, is a key determinant of membrane excitability in neurons and cardiovascular tissue. Kv1.2 is subject to multiple forms of regulation and therefore integrates cellular signals involved in the homeostasis of excitability. The cyclic AMP/protein kinase A (PKA) pathway enhances Kv1.2 ionic current; however, the mechanisms for this are not fully known. Here we show that cAMP maintains Kv1.2 homeostasis through opposing effects on channel trafficking. We found that Kv1.2 is regulated by two distinct cAMP pathways, one PKA-dependent and the other PKA-independent. PKA inhibitors elevate Kv1.2 surface levels, suggesting that basal levels of cAMP control steady-state turnover of the channel. Elevation of cAMP above basal levels also increases the amount of Kv1.2 at the cell surface. This effect is not blocked by PKA inhibitors, but is blocked by inhibition of Kv1.2 endocytosis. We conclude that Kv1.2 levels at the cell surface are kept in dynamic balance by opposing effects of cAMP.  相似文献   

12.
Regulating gene transcription in response to cyclic AMP elevation   总被引:3,自引:0,他引:3  
  相似文献   

13.
Mechanisms by which beta-adrenergic receptor (beta AR) agonists inhibit proliferation of human airway smooth muscle (HASM) cells were investigated because of their potential relevance to smooth muscle hyperplasia in asthma. We hypothesized that beta AR agonists would inhibit mitogenesis in HASM cells via the beta 2AR, an increase in cAMP, and PKA activation. HASM cells were treated for 24 h with various agents and then analyzed for [3H]thymidine incorporation as a measure of cell proliferation. EGF stimulated proliferation by approximately 10-fold. The nonselective beta AR agonist isoproterenol and the beta 2AR-selective agonists albuterol and salmeterol inhibited EGF-stimulated proliferation by more than 50%, with half-maximal effects at 4.8 nM, 110 nM, and 6.7 nM, respectively. A beta 2AR-selective antagonist inhibited the isoproterenol effect with 100-fold greater potency than a beta 1AR-selective antagonist, confirming beta 2AR involvement in the inhibition of proliferation. The cAMP-elevating agents PGE2 and forskolin decreased EGF-induced proliferation, suggesting cAMP as the mediator. beta 2AR agonists and forskolin also inhibited proliferation stimulated by lysophosphatidic acid (LPA) as well as the synergistic proliferation stimulated by LPA+EGF. Importantly, PKA-selective cAMP analogs did not inhibit proliferation at concentrations that maximally activated PKA (10-100 microM), whereas a cAMP analog selective for the exchange protein directly activated by cAMP (EPAC), 8-(4-chlorophenylthio)-2'-O-methyl-cAMP, maximally inhibited proliferation at a concentration that did not activate PKA (10 microM). These data show that beta 2AR agonists and other cAMP-elevating agents decrease proliferation in HASM cells via a PKA-independent mechanism, and they provide pharmacological evidence for involvement of EPAC or an EPAC-like cAMP effector protein instead.  相似文献   

14.
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.  相似文献   

15.
cAMP regulates a wide range of processes through its downstream effectors including PKA, and the family of guanine nucleotide exchange factors. Depending on the cell type, cAMP inhibits or stimulates growth and proliferation in a PKA-dependent or independent manner. PKA-independent effects are mediated by PI 3-kinases-Akt signaling and EPAC1 (exchange protein directly activated by cAMP) activation. Recently, we reported PKA-independent activation of the protein kinase Akt as well co-immunoprecipitation of Epac1 with Rap1, p-Akt(Thr-308), and p-Akt(Ser-473) in forskolin-stimulated macrophages. To further probe the role of Epac1 in Akt protein kinase activation and cellular proliferation, we employed the cAMP analog 8-CPT-2-O-Me-cAMP, which selectively binds to Epac1 and triggers Epac1 signaling. We show the association of Epac1 with activated Akt kinases by co-immunoprecipitation and GST-pulldown assays. Silencing Epac1 gene expression by RNA interference significantly reduced levels of Epac1 mRNA, Epac protein, Rap1 GTP, p-ERK1/2, p-B-Raf, p110alpha catalytic subunit of PI 3-kinase, p-PDK, and p-p(70s6k). Silencing Epac1 gene expression by RNA interference also suppressed 8-CPT-2-O-Me-cAMP-upregulated protein and DNA synthesis. Concomitantly, 8-CPT-2-O-Me-cAMP-mediated upregulation of Akt(Thr-308) protein kinase activity and p-Akt(Thr-308) levels was prevented in plasma membranes and nuclei of the cells. In contrast, silencing Epac1 gene expression reduced Akt(Ser-473) kinase activity and p-Akt(Ser-473) levels in plasma membranes, but showed negligible effects on nuclear activity. In conclusion, we show that cAMP-induced Akt kinase activation and cellular proliferation is mediated by Epac1 which appears to function as an accessory protein for Akt activation.  相似文献   

16.
In a previous study, we showed that isoproterenol induced actin depolymerization in human airway smooth muscle cells by both protein kinase A (PKA)-dependent and -independent signaling pathways. We now investigate the signaling pathway of PKA-independent actin depolymerization induced by isoproterenol in these cells. Cells were briefly exposed to isoproterenol or PGE(1) in the presence and absence of specific inhibitors of Src-family tyrosine kinases, phosphatidylinositol-3-kinase (PI3 kinase), or MAP kinase, and actin depolymerization was measured by concomitant staining of filamentous actin with FITC-phalloidin and globular actin with Texas red DNase I. Isoproterenol, cholera toxin, and PGE(1) induced actin depolymerization, indicated by a decrease in the intensity of filamentous/globular fluorescent staining. Pretreatment with the Src kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriimidine (PP2) or geldanamycin or the PKA inhibitor Rp-cAMPS only partly inhibited isoproterenol- or PGE(1)-induced actin depolymerization. In contrast, PP2 and geldanamycin did not inhibit forskolin-induced actin depolymerization, and AG-213 (an EGF receptor tyrosine kinase inhibitor) did not inhibit isoproterenol- or PGE(1)-induced actin depolymerization. PI3 kinase or MAP kinase inhibition did not inhibit isoproterenol-induced actin depolymerization. Moreover, isoproterenol but not forskolin induced tyrosine phosphorylation of an Src family member at position 416. These results further confirm that both PKA-dependent and PKA-independent pathways mediate actin depolymerization in human airway smooth muscle cells and that the PKA-independent pathway by which isoproterenol induces actin depolymerization in human airway smooth muscle cells involves Src protein tyrosine kinases and the G(s) protein.  相似文献   

17.
cAMP-mediated cell proliferation is a complex process that involves multiple pathways. Using a cAMP-dependent cell system, FRTL-5 thyroid cells, we have previously demonstrated the existence of a precise autocrine loop in the control of cell proliferation that involves the positive effector thyrotropin (TSH) and the general inhibitor somatostatin. In search of the regulatory mechanisms responsible for the TSH and somatostatin control of cell proliferation, we analyzed the cell cycle regulatory proteins and the cellular pathways involved in the action of both signals. The results show that specific inhibition of cAMP-dependent protein kinase (PKA) and phosphatidylinositol (PI) 3-kinase blocks independently TSH-induced FRTL-5 cell proliferation and that somatostatin interferes with both signals. Each pathway activates different proteins required for G(1)/S progression. Thus, PKA is responsible for the TSH-induction of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA levels, RhoA activation, and down-regulation of p27(kip1). These correlated events are necessary for FRTL-5 cell proliferation after TSH stimulation. Moreover, TSH through PKA pathway increases cyclin-dependent kinase 2 levels, whereas PI 3-kinase signaling increases cyclin E levels. Together, both pathways finally converge, increasing the formation and activation of cyclin E x cyclin-dependent kinase 2 complexes and the phosphorylation of the retinoblastoma protein, two important steps in the transition from G(1) to S phase in growth-stimulated cells. Somatostatin exerts its antiproliferative effect inhibiting more upstream the TSH stimulation of PKA and PI 3-kinase, interfering with the TSH-mediated increases of intracellular cAMP levels by inactivation of adenylyl cyclase activity. Together, these results suggest the existence of a PKA-dependent pathway and a new PKA-independent PI 3-kinase pathway in the TSH/cAMP-mediated proliferation of FRTL-5 thyroid cells.  相似文献   

18.
19.
We have recently reported that the inhibition of endothelial cell COX-2 by non-steroidal anti-inflammatory drugs suppresses alpha(V)beta(3)- (but not alpha(5)beta(1)-) dependent Rac activation, endothelial cell spreading, migration, and angiogenesis (Dormond, O., Foletti, A., Paroz, C., and Ruegg, C. (2001) Nat. Med. 7, 1041-1047). Here we investigated the role of the COX-2 metabolites PGE(2) and TXA2 in regulating human umbilical vein endothelial cell (HUVEC) adhesion and spreading. We report that PGE(2) accelerated alpha(V)beta(3)-mediated HUVEC adhesion and promoted Rac activation and cell spreading, whereas the TXA2 agonist retarded adhesion and inhibited spreading. We show that the cAMP level and the cAMP-regulated protein kinase A (PKA) activity are critical mediators of these PGE(2) effects. alpha(V)beta(3)-mediated adhesion induced a transient COX-2-dependent rise in cAMP levels, whereas the cell-permeable cAMP analogue 8-brcAMP accelerated adhesion, promoted Rac activation, and cell spreading in the presence of the COX-2 inhibitor NS-398. Pharmacological inhibition of PKA completely blocked alpha(V)beta(3)-mediated adhesion. A constitutively active Rac mutant (L61Rac) rescued alpha(V)beta(3)-dependent spreading in the presence of NS398 or, but did not accelerate adhesion, whereas a dominant negative Rac mutant (N17Rac) suppressed spreading without affecting adhesion. alpha(5)beta(1)-mediated HUVEC adhesion, Rac activation, and spreading were not affected by PGE(2), 8-brcAMP, or the inhibition of PKA. In conclusion, these results demonstrate that PGE(2) accelerates alpha(V)beta(3)-mediated endothelial cell adhesion through cAMP-dependent PKA activation and induces alpha(V)beta(3)-dependent spreading via cAMP- and PKA-dependent Rac activation and may contribute to the further understanding of the regulation of vascular integrins alpha(V)beta(3) by COX-2/PGE(2) during tumor angiogenesis and inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号