首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene Conversion, Linkage, and the Evolution of Multigene Families   总被引:2,自引:1,他引:1       下载免费PDF全文
T. Nagylaki 《Genetics》1988,120(1):291-301
The evolution of the probabilities of genetic identity within and between the loci of a multigene family is investigated. Unbiased gene conversion, equal crossing over, random genetic drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. The linkage map is arbitrary, and the location dependence of the probabilities of identity is formulated exactly. The greatest of the rates of gene conversion, random drift, and mutation is epsilon much less than 1. For interchromosomal conversion, the equilibrium probabilities of identity are within order epsilon [i.e., O(epsilon)] of those in a simple model that has no location dependence and, at equilibrium, no linkage disequilibrium. At equilibrium, the linkage disequilibria are of O(epsilon); they are evaluated explicitly with an error of O(epsilon 2); they may be negative if symmetric heteroduplexes occur. The ultimate rate and pattern of convergence to equilibrium are within O(epsilon 2) and O(epsilon), respectively, of that of the same simple model. If linkage is loose (i.e., all the crossover rates greatly exceed epsilon, though they may still be much less than 1/2), the linkage disequilibria are reduced to O(epsilon) in a time of O(-ln epsilon). If intrachromosomal conversion is incorporated, the same results hold for loose linkage, except that, if the crossover rates are much less than 1/2, then the linkage disequilibria generally exceed those for pure interchromosomal conversion.  相似文献   

2.
T. Nagylaki 《Genetics》1990,126(1):261-276
The evolution of the probabilities of genetic identity within and between the loci of a multigene family dispersed among multiple chromosomes is investigated. Unbiased gene conversion, equal crossing over, random genetic drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. The linkage map is arbitrary, but the same for every chromosome; the dependence of the probabilities of identity on the location on each chromosome is formulated exactly. The greatest of the rates of gene conversion, random drift, and mutation is epsilon much less than 1. Under the assumption of loose linkage (i.e., all the crossover rates greatly exceed epsilon, though they may still be much less than 1/2), explicit approximations are obtained for the equilibrium values of the probabilities of identity and of the linkage of disequilibria. The probabilities of identity are of order one [i.e., O(1)] and do not depend on location; the linkage disequilibria are of O(epsilon) and, within each chromosome, depend on location through the crossover rates. It is demonstrated also that the ultimate rate and pattern of convergence to equilibrium are close to that of a much simpler, location-independent model. If intrachromosomal conversion is absent, the above results hold even without the assumption of loose linkage. In all cases, the relative errors are of O(epsilon). Even if the conversion rate between genes on nonhomologous chromosomes is considerably less than between genes on the same chromosome or homologous chromosomes, the probabilities of identity between the former genes are still almost as high as those between the latter, and the rate of convergence is still not much less than with equal conversion rates. If the crossover rates are much less than 1/2, then most of the linkage disequilibrium is due to intrachromosomal conversion. If linkage is loose, the reduction of the linkage disequilibria to O(epsilon) requires only O(-ln epsilon) generations.  相似文献   

3.
The Evolution of Multigene Families under Intrachromosomal Gene Conversion   总被引:8,自引:2,他引:6  
Thomas Nagylaki 《Genetics》1984,106(3):529-548
A model for the evolution of the probabilities of genetic identity within and between loci of a multigene family in a finite population is formulated and investigated. Unbiased intrachromosomal gene conversion, equal crossing over between tandemly repeated genes, random genetic drift and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid, monoecious population mates at random. Formulas for the equilibrium values of the probabilities of identity and a cubic equation for the rate of convergence are deduced. Numerical examples indicate the following. The amount of homology at equilibrium generally decreases as the mutation rate, the population size and the number of repeats increase; it may increase or decrease with increasing crossover rate. The intralocus homology has an intermediate minimum, whereas the interlocus homology increases, as the rate of gene conversion increases. The intralocus homology decreases, whereas the interlocus homology increases, as the proportion of symmetric heteroduplexes increases. The characteristic convergence time can be sufficiently short to imply that intrachromosomal gene conversion may be an important mechanism for maintaining sequence homogeneity among repeated genes. The convergence time decreases as the conversion rate and the proportion of symmetric heteroduplexes increase; although exceptions occur, it generally increases as the population size and the number of repeats increase; it may increase or decrease with increasing crossover rate.  相似文献   

4.
Ohta T 《Genetics》1979,91(3):591-607
Evolution of a multigene family is studied from the standpoint of population genetics. It is assumed that the multigene family is undergoing continuous interchromosomal unequal crossing over, mutation and random frequency drift. The equilibrium properties of the probability of gene identity (clonality) are investigated, using two measures: identity probability within and between chromosomes. The measures represent homogeneity of genes within a family in one chromosome and similarity of gene families between two homologous chromosomes. The means, the variances and the covariance of these two measures of identity probability are obtained by using the diffusion equation method. It is shown that the means and the variances are generally smaller than those predicted in the previous model assuming intrachromosomal (sister chromatid) unequal crossing over (Ohta 1978a,b).  相似文献   

5.
A model of evolution for accumulating genetic information   总被引:3,自引:0,他引:3  
By taking into account recent knowledge of multigene families and other repetitive DNA sequences, a model of evolution by gene duplication for accumulating genetic information is studied. Genetic information is defined as the sum of distinct functions that the gene family can perform. A coefficient, "genetic diversity" is defined and used in this study, that is highly correlated with genetic information. Initially, a multigene family with a few gene copies is assumed, and natural selection starts to work on this gene family to increase genetic diversity contained in the gene family. As an important mechanism, unequal crossing-over is incorporated. Together with mutation, it is responsible for supplying genetic variability among individuals for selection to work. A specific model, in which individuals with less genetic diversity are selectively disadvantageous, has been studied in detail. Through approximate theoretical analysis and extensive Monte Carlo studies, it has been shown that the system is an extremely efficient way to accumulate genetic information. For attaining one gene, the genetic load is much smaller under this model than under the traditional model of natural selection. The model may be applied to the process of origin of multigene families with diverse copy members such as those of immunoglobulin or cytochrome P450. In general, the process of creating new genes by duplication might be somewhere between the present and the traditional models.  相似文献   

6.
Ohta T 《Genetics》1978,88(4):845-861
The evolution of repeated genes forming a multigene family in a finite population is studied with special reference to the probability of gene identity, i.e., the identity probability of two gene units chosen from the gene family. This quantity is called clonality and is defined as the sum of squares of the frequencies of gene lineages in the family. The multigene family is undergoing continuous unequal somatic crossing over, ordinary interchromosomal crossing over, mutation and random frequency drift. Two measures of clonality are used: clonality within one chromosome and that between two different chromosomes. The equilibrium properties of the means, the variances and the covariance of the two measures of clonality are investigated by using the diffusion equation method under the assumption of constant number of gene units in the multigene family. Some models of natural selection based on clonality are considered. The possible significance of the variance and covariance of clonality among the chromosomes on the adaptive differentiation of gene families such as those producing antibodies is discussed.  相似文献   

7.
Montgomery Slatkin 《Genetics》1985,110(1):145-158
A model is developed to predict the extent of genetic differentiation in a family of transposable elements under the combined effects of genetic drift, transposition, mutation and unbiased gene conversion. The model is based on simplifying assumptions that are valid when transposition is always to new sites and copy number per site is low. In the absence of gene conversion, the degree of differentiation as measured by the probability of identity of different elements is the same as at a single locus with the same mutation rate but in a population of effective size Nc/2, where N is the population size and c is the number of copies per individual. The inclusion of unbiased gene conversion does not significantly change this result. If, as seems to be the case, families of transposable elements are relatively homogeneous, then the model implies either that mutation rates for transposable elements are much lower than at comparable single-copy loci or that some other force, such as natural selection or biased gene conversion, is at work. Transposition is a very ineffective force for homogenizing a family of transposable elements.  相似文献   

8.
An approximation to the average number of deleterious mutations per gamete, Q, is derived from a model allowing selection on both zygotes and male gametes. Progeny are produced by either outcrossing or self-fertilization with fixed probabilities. The genetic model is a standard in evolutionary biology: mutations occur at unlinked loci, have equivalent effects, and combine multiplicatively to determine fitness. The approximation developed here treats individual mutation counts with a generalized Poisson model conditioned on the distribution of selfing histories in the population. The approximation is accurate across the range of parameter sets considered and provides both analytical insights and greatly increased computational speed. Model predictions are discussed in relation to several outstanding problems, including the estimation of the genomic deleterious mutation rates (U), the generality of "selective interference" among loci, and the consequences of gametic selection for the joint distribution of inbreeding depression and mating system across species. Finally, conflicting results from previous analytical treatments of mutation-selection balance are resolved to assumptions about the life-cycle and the initial fate of mutations.  相似文献   

9.
Montgomery Slatkin 《Genetics》1986,112(3):681-698
A mathematical model of the effects of interchromosomal biased gene conversion, mutation and natural selection on a multigene family is developed and analyzed. The model assumes two allelic states at each of n loci. The effects of genetic drift are ignored. The model is developed under the assumption of no recombination, but the analysis shows that, at equilibrium, there is no linkage disequilibrium, which implies that the conclusions are valid for arbitrary recombination among loci. At equilibrium, the balance between mutation, gene conversion and selection depends on the ratio of the mutation rates to the quantity [s + g(2α - 1)/ n], where s is the increment or decrement in relative fitness with each additional copy of one of the alleles, g is the conversion rate, and α is a measure of the bias in favor of one of the alleles. When this quantity is large relative to the mutation rates, the allele that has the net advantage, combining the effects of selection and conversion, will be nearly fixed in the multigene family. A comparison of these results with those from a comparable model of intrachromosomal biased conversion shows that biased interchromosomal conversion leads to approximately the same equilibrium copy number as does intrachromosomal conversion of the same strength. Interchromosomal conversion is much more effective in causing the substitution of one allele by another. The relative frequencies of interchromosomal and intrachromosomal conversion is indicated by the extent of the linkage disequilibrium among the loci in a multigene family.  相似文献   

10.
Modeling the joint distribution of a binary trait (disease) within families is a tedious challenge, owing to the lack of a general statistical model with desirable properties such as the multivariate Gaussian model for a quantitative trait. Models have been proposed that either assume the existence of an underlying liability variable, the reality of which cannot be checked, or provide estimates of aggregation parameters that are dependent on the ordering of family members and on family size. We describe how a class of copula models for the analysis of exchangeable categorical data can be incorporated into a familial framework. In this class of models, the joint distribution of binary outcomes is characterized by a function of the given marginals. This function, referred to as a "copula," depends on an aggregation parameter that is weakly dependent on the marginal distributions. We propose to decompose a nuclear family into two sets of equicorrelated data (parents and offspring), each of which is characterized by an aggregation parameter (alphaFM and alphaSS, respectively). The marginal probabilities are modeled through a logistic representation. The advantage of this model is that it provides estimates of the aggregation parameters that are independent of family size and does not require any arbitrary ordering of sibs. It can be incorporated easily into segregation or combined segregation-linkage analysis and does not require extensive computer time. As an illustration, we applied this model to a combined segregation-linkage analysis of levels of plasma angiotensin I-converting enzyme (ACE) dichotomized into two classes according to the median. The conclusions of this analysis were very similar to those we had reported in an earlier familial analysis of quantitative ACE levels.  相似文献   

11.
On the divergence of genes in multigene families   总被引:2,自引:0,他引:2  
Statistical properties of the amount of divergence of genes in multigene families are studied. The model considered is an infinite-site neutral model with unbiased intrachromosomal conversion, unbiased interchromosomal conversion, and recombination. By considering the time back to the most recent common ancestor of two genes, both the probability of identity and the moments of S, the number of sites that differ between two sampled genes, are obtained. We find that if recombination rates are large or conversion is always interchromosomal, then the expectation of S is 4N mu n where N is the population size, mu is the rate of mutation per generation per gene and n is the number of genes in the gene family, as the conversion rates approach zero, the moments of divergence do not approach the moments of divergence with conversion rates equal to zero, and it is possible for a decrease in the rate of intrachromosomal conversion to result in a higher probability of identity, but a greater mean divergence of the two genes.  相似文献   

12.
Ngai J 《Cell》2004,116(5):636-637
The functional identity of an olfactory sensory neuron is defined by its expression of one odorant receptor from a large multigene family. The complexity of this process has led to speculation that DNA rearrangements are used to limit the expression of one receptor gene per cell. However, a recent report in Nature directly rules out irreversible DNA rearrangements as a mechanism for odorant receptor gene choice.  相似文献   

13.
Summary The previous simple model for treating concerted evolution of multigene families has been revised to be compatible with various new observations on the immunoglobulin variable region family and other families. In the previous model, gene conversion and unequal crossing-over were considered, and it was assumed that genes are randomly arranged on the chromosome; neither subdivision nor correlation of gene identity and chromosomal distance were considered. Although this model satisfactorily explains the observed amino acid diversity within and between species, it fails to predict the very ancient branching of the mouse immunoglobulin heavy chain V-gene family. By incorporating subdivided structure and genetic correlation with chromosomal distance into the simple model, the data of divergence may be satisfactorily explained, as well as the rate of nucleotide substitution and the amino acid diversity. The rate at which a V-gene is duplicated or deleted by conversion or by unequal crossing-over is estimated by the new model to be on the order of 10–6 per year. The model may be applicable to other multigene families, such as those coding for silkmoth chorion or mammalian kallikrein.Contribution no. 1560 from the National Institute of Genetics, Mishima, 411 Japan  相似文献   

14.
S Magnussen 《Génome》1992,35(6):931-938
A regression model to predict quantiles of narrow sense individual and family mean heritabilities is developed and used to predict confidence intervals either directly or via a generalized beta distribution model. Extensive simulations of balanced sib analysis trials in randomized complete block designs and normal distributed environmental and additive genetic effects confirmed that heritabilities follow a beta distribution even in cases with up to 10% of the data missing at random. The new model is both more accurate and more precise than commonly used alternatives based on "exact" chi 2 distributions and Satterthwaites approximations to the degrees of freedom. Estimates of the expected heritability and a Taylor approximation of the standard error of the heritability are needed as input to the quantile model. Applications of the presented models for estimating confidence intervals and as an aid in the design of experiments are provided.  相似文献   

15.
To increase the analytical tractability of lattice stochastic spatial population models, several approximations have been developed. The pair-edge approximation is a moment-closure method that is effective in predicting persistence criteria and invasion speeds on a homogeneous lattice. Here we evaluate the effectiveness of the pair-edge approximation on a spatially heterogeneous lattice in which some sites are unoccupiable, or "dead". This model has several possible interpretations, including a spatial SIS epidemic model, in which some sites are occupied by immobile host-species individuals while others are empty. We find that, as in the homogeneous model, the pair-edge approximation is significantly more accurate than the ordinary pair approximation in determining conditions for persistence. However, habitat heterogeneity decreases invasion speed more than is predicted by the pair-edge approximation, and the discrepancy increases with greater clustering of "dead" sites. The accuracy of the approximation validates the underlying heuristic picture of population spread and therefore provides qualitative insight into the dynamics of lattice models. Conversely, the situations where the approximation is less accurate reveals limitations of pair approximation in the presence of spatial heterogeneity.  相似文献   

16.
Linkage studies of complex genetic traits raise questions about the effects of genetic heterogeneity and assortative mating on linkage analysis. To further understand these problems, I have simulated and analyzed family data for a complex genetic disease in which disease phenotype is determined by two unlinked disease loci. Two models were studied, a two-locus threshold model and a two-locus heterogeneity model. Information was generated for a marker locus linked to one of the disease-defining loci. Random-mating and assortative-mating samples were generated. Linkage analysis was then carried out by use of standard methods, under the assumptions of a single-locus disease trait and a random-mating population. Results were compared with those from analysis of a single-locus homogeneous trait in samples with the same levels of assortative mating as those considered for the two-locus traits. The results show that (1) introduction of assortative mating does not, in itself, markedly affect the estimate of the recombination fraction; (2) the power of the analysis, reflected in the LOD scores, is somewhat lower with assortative rather than random mating. Loss of power is greater with increasing levels of assortative mating; and (3) for a heterogeneous genetic disease, regardless of mating type, heterogeneity analysis permits more accurate estimate of the recombination fraction but may be of limited use in distinguishing which families belong to each homogeneous subset. These simulations also confirmed earlier observations that linkage to a disease "locus" can be detected even if the disease is incorrectly defined as a single-locus (homogeneous) trait, although the estimated recombination fraction will be significantly greater than the true recombination fraction between the linked disease-defining locus and the marker locus.  相似文献   

17.
The degree of genetic determination of 25 quantitative dermatoglyphic characteristics has been studied on family: twin material: 45 pairs of MZ and 75 single-sex DZ twins; and 53 single-sex "parent-child" pairs. Approximating formulae were used to estimate main components of phenotypic variance due to additive interaction of genetic factors, to non-linear effects (intralocus dominance) and to the effect of total-familiar and random environmental factors. All the finger dermatoglyphic characteristics studied had a high degree of genetic determination (G greater than 0,80), and for most of them the contribution into the large variance of intralocus dominance effects was comparable with that of additive gene interaction, included in the determination of these characters. There are some palm dermatoglyphic characteristics ("ad" distance "cd" comb counting, "bad", "adt" and "cda" angles), which degree of genetic determination is low (G less than 0,35). At least ten quantitative finger and palm dermatogliphic characteristics with a high degree of genetic determination can be used for special studies in frames of multidimentional genetical analysis, including determination of twin zygosity type. Earlier described "indices" (using twin data) of relative role of genetic and environment factors in the determination of populational variability of quantitative characters are considered. None of them is shown to be a reliable estimate of the coefficient of genetic character determination. The use of these indices in practical studies can result in wrong conclusions on the degree and the character of genetic determination of quantitative characters.  相似文献   

18.
Marginalized models (Heagerty, 1999, Biometrics 55, 688-698) permit likelihood-based inference when interest lies in marginal regression models for longitudinal binary response data. Two such models are the marginalized transition and marginalized latent variable models. The former captures within-subject serial dependence among repeated measurements with transition model terms while the latter assumes exchangeable or nondiminishing response dependence using random intercepts. In this article, we extend the class of marginalized models by proposing a single unifying model that describes both serial and long-range dependence. This model will be particularly useful in longitudinal analyses with a moderate to large number of repeated measurements per subject, where both serial and exchangeable forms of response correlation can be identified. We describe maximum likelihood and Bayesian approaches toward parameter estimation and inference, and we study the large sample operating characteristics under two types of dependence model misspecification. Data from the Madras Longitudinal Schizophrenia Study (Thara et al., 1994, Acta Psychiatrica Scandinavica 90, 329-336) are analyzed.  相似文献   

19.
We study a two-locus model of a quantitative trait with a continuum-of alleles and multilinear epistasis that evolves under mutation, selection, and genetic drift. We derive analytical results based on the so-called House of Gauss approximation for the genetic variance, the mean phenotype, and the mutational variance in the balance of the evolutionary forces. The analytical work is complemented by extensive individual-based computer simulations. We find that (1) analytical results are accurate in a large parameter space; (2) epistasis always reduces the equilibrium genetic variance, as predicted in earlier studies that exclude drift; (3) large-scale stochastic fluctuations and non-equilibrium phenomena like adaptive inertia can strongly influence the evolution of the genetic architecture of the trait.  相似文献   

20.
Moments of the steady state frequency spectrum (probabilities of identity of samples of genes) are obtained for a subdivided population by using standard recursive identity by state calculations. These moments are used to obtain variances for some measures of genetic identity, including Nei's normalized genetic identity (I) and genetic distance (?logeI). The results are compared with those obtained from the corresponding undivided population theory, including adjustments to the effective number to try to account for subdivision. Undivided population approximations based on effective number are surprisingly accurate, regardless of the migration rate, when sampling exclusively from one subpopulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号