首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The effect of infection with Leishmania donovani on the activity and isoenzyme composition of acid phosphatase within individual murine peritoneal macrophages maintained in vitro was studied. Concentrations of acid phosphatase activity and number of intracellular parasites were quantitated using a computer-assisted cytospectrophotometry system. Changes in the isoenzyme composition of macrophages during infection with L. donovani were detected by comparing the patterns of acid phosphatase levels between macrophages treated in the absence and presence of an enzyme inhibitor. It was observed that the concentration levels of acid phosphatase activity in macrophages were decreased significantly by infection with L. donovani. An inverse relation existed between concentration of acid phosphatase activity and the number of intracellular L. donovani. Reduced concentrations of acid phosphatase activity were also observed in macrophages uninfected but exposed to L. donovani. The isoenzyme composition in macrophages did not change during the course of infection with L. donovani. These results demonstrate that L. donovani reduces the acid phosphatase activity of macrophages.  相似文献   

2.
3.
Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ~P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.  相似文献   

4.
Activated macrophages produce tumor necrosis factor (TNF), a cytokine with anti-tumor and anti-plasmodia activities. This study revealed that recombinant TNF (rTNF) inhibits intracellular multiplication of blood trypomastigotes of Trypanosoma cruzi in murine peritoneal macrophages. rTNF did not have any apparent direct effect on the survival of extracellular T. cruzi or on its ability to infect mammalian cells. The degree of inhibition of the intracellular multiplication of T. cruzi was found to be a function of the time of exposure of the infected cells to rTNF. rTNF induced a comparable effect when different strains of the parasite were used. In contrast to its activity on T. cruzi, rTNF did not affect intracellular multiplication of Toxoplasma gondii tachyzoites or bradyzoites in normal murine peritoneal macrophages or in human fibroblasts. Killing of Toxoplasma tachyzoites by activated macrophages was not enhanced by rTNF.  相似文献   

5.
Effector mechanisms of resistance exerted by T cells from BALB/c mice chronically infected with Trypanosoma cruzi, Tulahuén strain, were studied. Spleen cells from chronically infected mice (Chro-SC) prestimulated with heat-killed trypomastigotes (HKT) and/or IL-2 destroyed PHA-labeled p-815 mastocytoma cells, HKT-pulsed macrophages, and normal peritoneal macrophages. However, HKT-stimulated Chro-SC did not affect the infectivity of free bloodstream forms of the parasite. Upon HKT stimulation, Chro-SC or their culture supernatant activated peritoneal macrophages for the destruction of intracellular amastigotes. The effect was abolished after Thy 1.2+ cell depletion. The addition of Cyclosporin A (CyA), which blocks T-cell activation, during HKT-stimulation of Chro-SC, diminished their ability to activate the trypanocidal activity of macrophages. CyA also inhibited the production of both macrophage-activating factors and interferon-gamma by HKT-stimulated Chro-SC. CyA administration to recipients of nylon-wool nonadherent spleen cells from chronically infected mice inhibited their adoptively acquired resistance against T. cruzi, suggesting that the conferred resistance depended on the effect of specifically activated cells. When administered during the chronic stage of the infection, CyA abrogated the antigen-specific delayed type hypersensitivity response but increased the levels of anti-T. cruzi IgG antibodies. Neither parasitemia, tissular parasitism in myocardium or skeletal muscle, nor mortality were detected after CyA treatment, suggesting the presence of a CyA nonsensitive mechanism(s) in the control of T. cruzi during the chronic phase of the infection.  相似文献   

6.
Cytotoxic-activated macrophages control Toxoplasma gondii growth by producing nitric oxide (NO). However, the parasite can partially inhibit NO production. NO is generated from arginine within the polyamine biosynthetic pathway. Two enzymes of this pathway are ornithine, decarboxylase (ODC) and arginine decarboxylase (ADC). The aim of the present work was to investigate whether T. gondii is able to modulate polyamine metabolism in macrophages. Toxoplasma gondii infection did not affect basal ODC or ADC activity. However, lipopolysaccharide induced an increase in ODC activity. Polyamine-treated macrophages exhibited a T. gondii-infection index similar to controls but a higher adhesion index; the parasite did not grow in methyl-ornithine (ODC inhibitor)-treated macrophages. The parasites were able to take up putrescine with a Km of 0.92 microM, indicating the presence of a high-affinity putrescine-transporter system. Putrescine-treated T. gondii actively penetrated macrophages and Vero cells. However, NO production and lysosomal parasitophorous vacuole fusion were not inhibited. Considered together, these results demonstrate that T. gondii requires polyamines for multiplication. However, as opposed to Trypanosoma cruzi and because of a relatively high-affinity putrescine-transporter system in the parasite, constitutive macrophage levels of putrescine seem sufficient to support T. gondii survival and multiplication.  相似文献   

7.
Co-culture of blood forms of Trypanosoma cruzi, the causative agent of Chagas' disease, with human PBMC impaired the capacity of T lymphocytes to express surface receptors for IL-2. This effect was evidenced by marked reductions in both the proportion of Tac+ cells and the density of Tac Ag on the surface of the positive cells, determined by flow cytometry. The extent of the inhibition increased with parasite concentration. Under optimal or suboptimal conditions of stimulation with either PHA or monoclonal anti-CD3, specific for an epitope of the T3-Ti human T cell Ag receptor complex, the presence of T. cruzi curtailed the capacity of T lymphocytes to proliferate and express Il-2R but did not affect IL-2 production. Furthermore, the addition of exogenous IL-2 did not restore the responsiveness of suppressed human lymphocytes but did when mouse lymphocytes were used instead. Therefore, unlike mouse lymphocytes, human lymphocyte suppression by T. cruzi did not involve deficient IL-2 production and was accompanied by impaired IL-2 utilization. Co-culture of human monocytes/macrophages with suppressive concentrations of T. cruzi increased IL-1 production, and the parasite did not decrease IL-1 secretion stimulated by a bacterial LPS. Therefore, the suppression of IL-2R expression and lymphoproliferation is not likely to have been an indirect consequence of insufficient IL-1 production due to infection of monocytes or macrophages. We have shown that suppression of human lymphocyte proliferation by T. cruzi is not caused by nutrient consumption, absorption of IL-2, lymphocyte killing, or mitogen removal by the parasite. Therefore, these results uncover a novel suppressive mechanism induced by T. cruzi, involving inhibited expression of IL-2R after lymphocyte activation and rendering T cells unable to receive the IL-2 signal required for continuation of their cell cycle and mounting effective immune responses.  相似文献   

8.
Recent reports have established an important role of CD4+CD25+ T cells in the immune regulation of infectious diseases, autoimmune disorders and cancer. In the present work, we investigated whether these cells had a regulatory role during Trypanosoma cruzi infection, using the Colombian strain. Inactivation of CD4+CD25+ cells in vivo conferred mice slightly more resistant to infection with the Colombian strain of T. cruzi, as evidenced by lower parasitemia and mortality rates. The augmented resistance to infection with Colombian strain did correlate with increased activation of effector CD4 cells. It was antibody-independent, since no difference in levels of IgM, IgG, IgG1 and IgG2a(b) recognizing T. cruzi antigens was observed throughout the infection of CD25-inactivated and control mice. Regarding pathogenesis, inflammatory infiltrate and frequency of CD4 and CD8 T cells or macrophages in the cardiac tissue was similar in both groups. Together, our data indicate that CD4+CD25+ cells have a limited role on host resistance during early T. cruzi infection. Despite exhaustive investigation, we did not observe any role for these regulatory cells in the pathogenesis of experimental chronic Chagas' disease.  相似文献   

9.
Activated macrophages produce nitric oxide (NO) and as such are able to control the multiplication of Toxoplasma gondii. Until now, no reports have described a possible modulation of NO production of macrophages after T. gondii infection. To investigate this possibility, murine blood monocyte-derived and peritoneal macrophages were activated in vitro with interferon-gamma and lipopolysaccharide and infected with T. gondii and Trypanosoma cruzi, and NO production was evaluated. NO was produced by monocyte-derived macrophages only if cultured in the presence of macrophage-colony-stimulating factor. Monocyte-derived or peritoneal macrophages infected with T. gondii presented a significant reduction in NO production. NO production inhibition was not detected after T. cruzi infection. Macrophages infected with higher T. gondii/macrophage ratios presented lower NO production. Furthermore, only viable T. gondii could cause partial inhibition of NO production. In macrophages activated 24 h before the interaction, partial inhibition was detected after 3 h of infection and continued for 48 h. In macrophages activated immediately after the interaction, partial inhibition was not detected at 12 h, but was observed at 24 h. T. gondii-infected macrophages present lower inducible nitric oxide synthase expression as assayed by immunofluorescence. T. gondii did not develop in monocyte-derived macrophages producing NO, but were not totally eliminated. These results demonstrate that T. gondii infection partially inhibits NO production by murine macrophages, suggesting that a deactivating macrophage mechanism may be used for better survival into phagocytic cells.  相似文献   

10.
Trypanosoma cruzi can infect and replicate in macrophages. During invasion, T. cruzi interacts with different macrophage receptors to induce its own phagocytosis. However, the nature of those receptors and the molecular mechanisms involved are poorly understood. In this study, we demonstrate that T. cruzi metacyclic trypomastigotes but not epimastigotes were able to induce Rab5 activation and binding to the early endosomes in peritoneal macrophages. In this process, active Rab5 colocalized with parasites in the phagosome and with the Rab5A effector molecule early endosomal antigen 1. Phagosome formation and T. cruzi internalization were inhibited in Raw 264.7 macrophages expressing a dominant-negative form of Rab5 [(S34N)Rab5]. Using T. cruzi membrane extracts, we verified that the Rab5 activation depends on the interaction between parasite surface molecules and macrophages surface molecule. In addition, during infection of macrophages, phosphatidylinositol 3-kinase (PI3K) pathway was activated. Assays carried out using a selective PI3K inhibitor (LY294002) showed that the PI3K activation is essential for Rab5 activation by T. cruzi infection and for the entrance and intracellular replication of T. cruzi in macrophages. Moreover, using macrophages from knockout mice, we found that activation of Rab5, fusion of early endosomes and phagocytosis induced by T. cruzi infection involved Toll-like receptor (TLR)2 but were independent of TLR4 receptors.  相似文献   

11.
Recombinant murine IFN-gamma (rMu-IFN-gamma) was demonstrated to be a potent in vivo activator of mouse peritoneal macrophages to kill Trypanosoma cruzi in vitro and to be capable of conferring protection against death from acute T. cruzi infection. Following i.p. injections of rMu-IFN-gamma, resident peritoneal macrophages were cultured and infected with T. cruzi in vitro. Numbers of intracellular parasites were determined at different times thereafter. Ten or 100 micrograms (1 microgram = 6.5 X 10(5) U) of Mu-IFN-gamma, injected both 24 and 4 h before macrophage harvest, induced up to 99% inhibition of T. cruzi. One microgram of rMu-IFN-gamma was not effective under these conditions. In vitro inhibition of T. cruzi by peritoneal macrophages occurred by 24 h after infection and continued until at least 120 h after infection. There were no significant differences in initial parasite uptake by macrophages from IFN-gamma-treated or control mice, indicating that the rMu-IFN-gamma induced parasite killing. One i.p. dose of 10 micrograms was as effective as two doses if the single injection was given 24 h before macrophage harvest. In subsequent experiments, mice were given multiple injections of 10 micrograms rMu-IFN-gamma beginning 24 h before or 2 h after infection with virulent T. cruzi. Mice treated with rMu-IFN-gamma had significantly lower parasitemias and decreased morbidity compared with control mice. Proliferative responses to Con A and antibody responses to SRBC were not significantly lowered in IFN-gamma-treated mice, in contrast to untreated infected controls. All of the IFN-gamma-treated mice survived acute T. cruzi infection, whereas 100% of saline-treated infected mice died. It was demonstrated in this study that rMu-IFN-gamma activated mouse macrophages in vivo to kill T. cruzi and that rMu-IFN-gamma significantly reduced morbidity and immune suppression, and eliminated mortality resulting from acute infection with this parasite.  相似文献   

12.
13.
The effects of agents that elevate intracellular levels of cGMP on macrophage internalization of the unicellular parasite Trypanosoma cruzi and latex particles were examined in an attempt to define characteristics of the infective process. Presence of imidazole, a drug that prevents degradation of the cGMP by inhibiting cGMP phosphodiesterase activity, during macrophage-T. cruzi interaction resulted in a marked increase in the number of parasites associated with the cells and the percentage of infected cells. Similar results were obtained when sodium nitroprusside (SNP), which increases cGMP levels by an as yet undefined mechanism, dibutyryl-cGMP, or both imidazole and dibutyryl-cGMP were added to the system. In contrast, the presence of imidazole, SNP, or dibutyryl-cGMP had no significant consequence on latex particle uptake by the macrophages. Whereas pretreatment of macrophages with imidazole plus dibutyryl-cGMP readily increased T. cruzi infection, pretreatment of the parasite with these drugs had no significant effect on the interaction. Furthermore, results of radioimmunoassays showed that imidazole and SNP indeed elevated cGMP levels in the macrophages but not in the parasites. Taken together, these results indicate that cGMP plays a facilitating role in macrophage infection by T. cruzi that contrasts with the lack of effect on the uptake of inert latex particles and the previously reported inhibitory effect of cAMP in the same system. Thus, cyclic nucleotides appear to play a role in modulating internalization of the parasite but not in the uptake of an inert particle by macrophages.  相似文献   

14.
At Makthlawaiya, in the Paraguayan Chaco, the prevalence of Trypanosoma (Schizotrypanum) cruzi infection among both domestic Triatoma infestans and domestic dogs was 38%, and IgG anti-T. cruzi antibody was detected by the quantitative enzyme-linked immunosorbent assay (ELISA) in 80% (105/133) of human sera. Ninety percent (25/28) of T. cruzi strains isolated from both T. infestans and dogs showed heterozygous isoenzyme profiles for glucose phosphate isomerase, phosphoglucomutase and 6-phosphogluconate dehydrogenase. These strains appeared to be closely related to Bolivian zymodeme 2. Three Paraguayan T. cruzi strains showed homozygous isoenzyme profiles, similar to those of major Brazilian zymodemes. It was concluded that T. cruzi strains with heterozygous isoenzyme profiles predominate in domestic transmission cycles in this highly endemic area of the Paraguayan Chaco.  相似文献   

15.
Infection of mice with Trypanosoma cruzi elicits the production of parasite-specific antibodies which reach high levels and remain elevated for at least 105 days of infection. The more susceptible C3H(He) mouse actually has a higher level of "natural" antibodies for T. cruzi but may show a greater lag time in the production of antibodies in response to infection than the more resistant C57BL/6 mouse. Comparison of the kinetics of antibody production against T. cruzi and the numbers of immunoglobulin-producing cells in the spleen during the course of infection suggests that a large number of the immunoglobulin-producing cells are probably producing antibodies directed against the parasite and are not the result of an exhaustive polyclonal B-cell activation. Cell numbers in the spleen change dramatically both in total numbers and in the percentage of different cell types during infection with T. cruzi. The percentage of T cells in the spleen remains relatively unchanged throughout infection in both mouse strains tested but numbers of Ig-positive cells decrease markedly during the acute phase of infection while macrophage numbers increase up to sixfold. Cell numbers and proportions of B cells, T cells, and macrophages return to near normal values by 105 days of infection in the C57BL/6 mouse.  相似文献   

16.
Activated macrophages are thought to kill Trypanosoma cruzi, which lack catalase, by the generation of hydrogen peroxide. We investigated triggering of the respiratory burst of activated macrophages induced by phagocytosis of virulent T. cruzi, bloodform trypomastigotes, amastigotes obtained from spleens, and tissue culture organisms; and of relatively nonvirulent epimastigotes. All stages of T. cruzi prompted the release of less than 10% of hydrogen peroxide released by activated macrophages when stimulated with PMA or Candida. Superoxide anion production was not stimulated by PMA or Candida in activated macrophages nor was there a significant qualitative reduction of nitroblue tetrazolium induced by ingestion of virulent T. cruzi. Opsonization of T. cruzi with specific antibody did not promote the release of hydrogen peroxide or the reduction of nitroblue tetrazolium. Similar results were observed with activated spleen macrophages. Incubation of activated macrophages with catalase, catalase and superoxide dismutase, sodium benzoate with or without catalase, and respiratory burst-exhausting PMA failed to inhibit the killing of T. cruzi in vitro. These results indicate that 1) virulent opsonized or unopsonized T. cruzi do not trigger a respiratory burst by activated macrophages and 2) oxygen-independent killing of T. cruzi is of prime importance.  相似文献   

17.
Primaquine has been used to treat Chagas' disease in humans and has been reported to be active against extracellular Trypanosoma cruzi. Experiments were designed to evaluate the relative activity of primaquine against extra- and intracellular T. cruzi and to determine if primaquine might be combined advantageously with ketoconazole. Primaquine at 0.5 micrograms/ml significantly inhibited T. cruzi replication in infected mouse peritoneal macrophages and also effectively treated infected L929 cells. To examine the effect of primaquine on extracellular organisms, tissue culture T. cruzi were incubated with primaquine for different periods of time and then used to infect macrophages. Incubation with 10 micrograms/ml for 14 hr but not 8 hr significantly inhibited but did not eradicate replication. Incubation of spleen amastigotes or blood trypomastigotes for 2 hr with 10 micrograms/ml did not inhibit replication. Incubation of extracellular tissue culture T. cruzi with primaquine for 2 hr did not potentiate the activity of ketoconazole against intracellular organisms. The combination of primaquine and ketoconazole administered to acutely infected mice significantly decreased parasitemias in comparison to treatment with primaquine or ketoconazole alone. Thus primaquine acts primarily on intracellular rather than extracellular T. cruzi. Primaquine and ketoconazole appear to have additive activity in vivo.  相似文献   

18.
Trypanosoma cruzi, the causative agent of Chagas' disease in humans, is an intracellular protozoan parasite with the ability to invade a wide variety of mammalian cells by a unique and remarkable process in cell biology that is poorly understood. Here we present evidence suggesting a role for the host phosphatidylinositol (PI) 3-kinases during T. cruzi invasion. The PI 3-kinase inhibitor wortmannin marked inhibited T. cruzi infection when macrophages were pretreated for 20 min at 37 degrees C before inoculation. Infection of macrophages with T. cruzi markedly stimulated the formation of the lipid products of the phosphatidylinositol (PI) 3-kinases, PI 3-phospate, PI 3,4-biphosphate, and PI 3,4,5-triphosphate, but not PI 4-phosphate or PI 4,5-biphosphate. This activation was inhibited by wortmannin. Infection with T. cruzi also stimulated a marked increase in the in vitro lipid kinase activities that are present in the immunoprecipitates of anti-p85 subunit of class I PI 3-kinase and anti-phosphotyrosine. In addition, T. cruzi invasion also activated lipid kinase activity found in immunoprecipitates of class II and class III PI 3-kinases. These data demonstrate that T. cruzi invasion into macrophages strongly activates separated PI 3-kinase isoforms. Furthermore, the inhibition of the class I and class III PI 3-kinase activities abolishes the parasite entry into macrophages. These findings suggest a prominent role for the host PI 3-kinase activities during the T. cruzi infection process.  相似文献   

19.
We compared in vitro and in vivo induction of IL-12 (p40) and IFN-gamma by mouse cells stimulated with Toxoplasma gondii, Trypanosoma cruzi, and different species of Leishmania. Spleen cells cultured in vitro with T. cruzi or T. gondii, but not with Leishmania, produced IL-12 (p40) and IFN-gamma. Accordingly, IL-12 (p40) was produced by macrophages stimulated in vitro with live T. cruzi or T. gondii or membrane glycoconjugates obtained from trypomastigotes or tachyzoites. No IL-12 production was detected when macrophages were stimulated with live parasites or glycoconjugates from Leishmania, regardless of priming with IFN-gamma. In vivo, only T. cruzi and T. gondii induced the synthesis of IL-12 and IFN-gamma by mouse spleen cells after intraperitoneal injection of parasites. When injected subcutaneously, live Leishmania sp. induced IL-12 (p40) and IFN-gamma production by draining lymph node cells, albeit the levels were slightly lower than those induced by infection with T. gondii or T. cruzi using the same route. Together our results indicate that under different conditions, the intracellular protozoa T. gondii and T. cruzi are more potent stimulators of IL-12 and IFN-gamma synthesis by host immune cells than parasites of the genus Leishmania.  相似文献   

20.
The effects of platelet-activating factor (PAF) on the ecto-phosphatase activity of Trypanosoma cruzi were investigated. Living parasites hydrolyzed p-nitrophenyl phosphate (p-NPP) at a rate of 5.71 +/- 0.37 nmol P(i) mg(-1) min(-1). This ecto-phosphatase activity increased to 8.70 +/- 1.12 nmol P(i) mg(-1) min(-1) when the cells were grown in the presence of 10(-9) M PAF. This effect was probably due to stimulation of the release of the ecto-phosphatase and/or the secretion of an intracellular phosphatase to the extracellular medium, as suggested by cytochemical analysis. Modulation of the ecto-phosphatase activity was also observed when PAF was added during the time course of the reaction. WEB 2086, a competitive PAF antagonist, was able to revert PAF effects when both were used at the same concentration. When PAF was added to a membrane enriched fraction preparation of T. cruzi, no alteration on the phosphatase activity was observed. This result suggests an involvement of intracellular signaling, as PAF was only effective on intact cells. Sphingosine and phorbol-12-myristate-13-acetate (PMA) were then used to investigate a possible involvement of protein kinase C (PKC) with PAF-induced phosphatase secretion. Sphingosine by itself stimulated the secretion of a phosphatase but did not significantly interfere with PAF effects on this enzyme. On the other hand, PMA was able to abrogate PAF-induced release of this phosphatase. These data are highly suggestive of a putative involvement of signal transduction mediated by a ligand of mammalian origin (PAF), through PKC and a specific receptor located on the cell surface of the human parasite Trypanosoma cruzi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号