首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spindle cells and their role in Kaposi's sarcoma   总被引:3,自引:0,他引:3  
Spindle cells represent the main cell type of the advanced final nodular stage of Kaposi's sarcoma lesions. Despite some clinical and epidemiological differences, the four Kaposi's sarcoma forms (classic, endemic, post-transplant and epidemic) display very similar histopathological features, with the proliferation of spindle cells (considered as the Kaposi's sarcoma tumor cells) associated with inflammation and neo-angiogenesis. Electron-microscopy and immuno-histochemistry studies have led to the consensus that the spindle cells originated from the endothelial lineage. However, only recently, studies that used specific lymphatic immunological markers (such as podoplanin) and molecular features (gene expression microarrays) strongly linked Kaposi's sarcoma spindle cells to the endothelium lymphatic cell lineage. Both hybridization and immuno-histochemistry techniques have demonstrated that human herpesvirus 8 also known as Kaposi's sarcoma associated herpesvirus was present in spindle cells at all stages of the disease (patch, plaque, nodule). Interestingly, while the human herpesvirus 8 latent genes are expressed in nearly all tumor spindle cells, only a small fraction of them expresses markers of viral lytic replication. Recent findings showing that nodular Kaposi's sarcoma lesions display all patterns of human herpesvirus 8 clonality support the model according to which this tumor begins as a polyclonal disease with a subsequent evolution to a mono/oligoclonal process involving infected spindle cells. Spindle cells appear to be the central masterpiece in KS tumorigenesis, however the exact respective role of each human herpesvirus 8 gene, in the initiation and the disease progression is still under investigation and the question of whether or not this tumor is a reactive process or a true malignant proliferation of spindle cells remains yet unclear.  相似文献   

2.
3.
Kaposi's sarcoma (KS) is an angioproliferative disease characterized by proliferation of spindle-shaped cells predominantly of endothelial cell origin, neoangiogenesis, inflammatory cell infiltration, and edema. At least in early stage, KS behaves as a reactive lesion sustained by the action of inflammatory cytokines and growth factors, has a polyclonal nature, and can regress. However, in time it can become monoclonal, especially in the nodular stage, evolving into a true sarcoma, likely in association with the increased expression of antiapoptotic oncogenes. We have recently demonstrated by immunohistochemical analysis that Bcl-2, a proto-oncogene known to prolong cellular viability and to antagonize apoptosis, is highly expressed in spindle cells and vessels of both AIDS-KS and classical KS lesions and that its expression increases with lesion stage. Paclitaxel, a microtubule-stabilizing drug known to inhibit Bcl-2 antiapoptotic activity and to be highly effective in the treatment of certain neoplasms, has recently been found to be active also in patients with advanced HIV-associated KS. In this report we investigated the mechanism(s) of paclitaxel activity in KS. By using a model of experimental KS induced by the inoculation of KS-derived spindle cells in nude mice and primary cultures of KS spindle cells, we found that paclitaxel promotes regression of KS lesions in vivo and that it blocks the growth, migration, and invasion of KS cells in vitro. Furthermore, paclitaxel treatment promoted apoptosis and down-regulated Bcl-2 protein expression in KS cells in vitro and in KS-like lesions in mice. Our results suggest that paclitaxel interferes with KS by down-regulating Bcl-2 antiapoptotic effect.  相似文献   

4.
Chen L  Lagunoff M 《Journal of virology》2005,79(22):14383-14391
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the infectious cause of Kaposi's sarcoma and is also associated with two B-cell lymphoproliferative diseases, primary effusion lymphoma and the plasmablastic form of multicentric Castleman's disease. KSHV is also found in the B-cell fraction of peripheral blood mononucleocytes of some KS patients. Despite in vivo infection of B cells and the ability of KSHV to infect many cell types in culture, to date B cells in culture have been resistant to KSHV infection. However, as shown here, the lack of infection is not due to the inability of B cells to support latent KSHV infection. When KSHV DNA is introduced into B cells, the virus is maintained as an episome and can establish and maintain latency over the course of months. As in all primary effusion lymphoma cell lines, there is a low level of spontaneous lytic replication in latently infected BJAB cells. Importantly, viral gene expression is similar to that of primary effusion lymphoma cell lines. Furthermore, the virus can be reactivated to higher levels with specific stimuli and transmitted to other cells, indicating that this is a productive infection. Thus B cells in culture are capable of establishing, maintaining, and reactivating from latency. These studies provide a controlled system to analyze how KSHV alters B cells during KSHV latency and reactivation.  相似文献   

5.
Sharp TV  Boshoff C 《IUBMB life》2000,49(2):97-104
Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8) is linked to the etiopathogenesis of Kaposi's sarcoma, a plasma-blastic variant of Castleman's disease and primary effusion lymphoma. KSHV is related to a number of non-human primate viruses. Only a limited number of KSHV proteins are expressed in tumor cells. Here we discuss the putative role of these proteins in KSHV pathogenesis.  相似文献   

6.
Kaposi's Sarcoma associated Herpesvirus (KSHV) is the most recently discovered human tumor virus and is associated with the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma, and Multicentric Casttleman's disease. KSHV contains numerous open reading frames with striking homology to cellular genes. These viral gene products play a variety of roles in KSHV-associated pathogenesis by disrupting cellular signal transduction pathways, which include interferon-mediated anti-viral responses, cytokine-regulated cell growth, apoptosis, and cell cycle control. In this review, we will attempt to cover our understanding of how viral proteins deregulate cellular signaling pathways, which ultimately contribute to the conversion of normal cells to cancerous cells.  相似文献   

7.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of Kaposi's sarcoma, primary effusion lymphoma, and plasmablastic multicentric Castleman's disease. STAT3 has been shown to be important for the maintenance of primary effusion lymphoma cells in culture and is chronically activated in many tumor cell lines. However, little is known about the role of KSHV in the activation of STAT3 or the role of STAT3 in KS tumors. We demonstrate that STAT3 is activated by KSHV infection of endothelial cells, the KS tumor cell type, in a biphasic fashion. Viral binding and entry activate STAT3 in the first 2 h after infection, but this activation dissipates by 4 h postinfection. By 12 h after KSHV infection, concomitant with the expression of latent genes, STAT3 is once again activated, and this activation persists for as long as latent infection is maintained. Activated STAT3 translocates to the nucleus, where it can bind to STAT3-specific DNA elements and can activate STAT3-dependent promoter activity. Conditioned medium from KSHV-infected endothelial cells is able to transiently activate STAT3, indicating the involvement of a secreted factor and that a latency-associated factor in KSHV-infected cells is necessary for sustained activation. KSHV upregulates gp130 receptor expression, and both gp130 and JAK2 are required for the activation of STAT3. However, neither human nor viral interleukin-6 is required for STAT3 activation. Persistent activation of the oncogenic signal transducer, STAT3, by KSHV may play a critical role in the viral pathogenesis of Kaposi's sarcoma, as well as in primary effusion lymphomas.  相似文献   

8.
v-cyclin encoded by Kaposi's sarcoma herpesvirus/human herpesvirus 8 (KSHV or HHV8) associates with cellular cyclin-dependent kinase 6 (CDK6) to form a kinase complex that promotes cell-cycle progression, but can also induce apoptosis in cells with high levels of CDK6. Here we show that whereas HHV8-encoded v-Bcl-2 protects against this apoptosis, cellular Bcl-2 has lost its anti-apoptotic potential as a result of an inactivating phosphorylation in its unstructured loop region. Moreover, we identify Bcl-2 as a new substrate for v-cyclin-CDK6 in vitro, and show that it is present in a complex with CDK6 in cell lysates. A Bcl-2 mutant with a S70A S87A double substitution in the loop region is not phosphorylated and provides resistance to apoptosis, indicating that inactivation of Bcl-2 by v-cyclin-CDK6 may be required for the observed apoptosis. Furthermore, the identification of phosphorylated Bcl-2 in HHV8-positive Kaposi's sarcoma indicates that HHV8-mediated interference with host apoptotic signalling pathways may encourage the development of Kaposi's sarcoma.  相似文献   

9.
Fujimuro M 《Uirusu》2006,56(2):209-218
Kaposi's sarcoma-associated herpesvirus (KSHV, also known as human herpesvirus 8), is well known to be responsible for Kaposi's sarcoma, the most common AIDS-related cancer. KSHV is also associated with the B cell malignancies primary effusion lymphoma and multicentric Castleman's disease. Cellular signaling pathways regulate the proliferation and differentiation during normal development and a small number of signaling pathways are involved in tumors. KSHV utilize those pathways, such as pRb-E2F, Wnt and Notch pathways, to promote driving of cell cycle and to regulate their own life-cycles (i.e., latency and lytic cycle). This review focuses on signaling pathways which KSHV gene products manipulate and discusses their contributions to tomorigenesis and regulation of viral life-cycles.  相似文献   

10.
Kaposi's sarcoma-associated herpesvirus, or human herpesvirus 8, the most recently discovered human tumor virus, is involved in the pathogenesis of Kaposi's sarcoma, primary effusion lymphoma and some cases of multicentric Castleman's disease. It is non-pathogenic in the majority of otherwise healthy individuals but highly oncogenic in the context of HIV-1 infection and iatrogenic immune suppression, and other cofactors might exist. Several viral genes can interfere with normal cell growth and differentiation, but their precise role in oncogenesis is still under investigation.  相似文献   

11.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the primary,etiological agent of Kaposi's sarcoma, primary effusion lymphoma and muticentric Castleman's disease. In common with the other herpesviruses, KSHV exhibits both latent and lyric life cycles, both of which are characterized by distinct gene expression profiles and programs. KSHV encodes proteins which play essential roles in the inhibition of host adaptive and innate immunity, the inhibition of apoptosis, and the regulation of the cell cycle. KSHV also encodes several proteins which have transforming and intrcellular signalling activity.  相似文献   

12.
Kaposi's sarcoma-associated herpesvirus(KSHV)is the primary etiological agent of Kaposi's sarcoma,primary effusion lymphoma and muticentric Castleman's disease.In common with the other herpesviruses,KSHV exhibits both latent and lytic life cycles,both of which are characterized by distinct gene expression profiles and programs.KSHV encodes proteins which play essential roles in the inhibition of host adaptive and innate immunity,the inhibition of apoptosis,and the regulation of the cell cycle.KSHV also encodes several proteins which have transforming and intrcellular signalling activity.  相似文献   

13.
14.
Angiogenic Kaposi's sarcoma (KS) skin lesions found in both AIDS and non-AIDS patients are universally associated with infection by the presumed causative agent, known as KS-associated herpesvirus (KSHV) or human herpesvirus 8. KSHV genomes expressing latent state virus-encoded mRNAs and the LANA1 (latent nuclear antigen 1) protein are consistently present in spindle-like tumor cells that are thought to be of endothelial cell origin. Although the KSHV lytic cycle can be induced in rare latently infected primary effusion lymphoma (PEL) cell lines, the ability to transmit or assay infectious KSHV has so far eluded investigators. Here, we demonstrate that infection with supernatant virions derived from three different tetradecanoyl phorbol acetate-induced PEL cell lines can induce cultured primary human dermal microvascular endothelial cells (DMVEC) to form colonies of proliferating latently infected spindle-shaped cells, all of which express the KSHV-encoded LANA1 protein. Although their initial infectivity varied widely (JSC1 > > BC3 > BCP1), virions from all three cell lines produced distinctive spindle cell colonies and plaques without affecting the contact-inhibited cobblestone-like phenotype of adjacent uninfected DMVEC. Each infected culture could also be expanded into a completely spindloid persistently infected culture displaying aggregated swirls of spindle cells resembling those in KS lesions. Formation of new colonies and plaques was inhibited in the presence of phosphonoacetic acid or gangciclovir, but these antiherpesvirus agents had little effect on the propagation of already latently infected spindloid cultures. In persistently infected secondary cultures, patches of up to 10% of the spindloid cells constitutively expressed several early viral lytic cycle proteins, and 1 to 2% of the cells also formed typical herpesvirus DNA replication compartments, displayed cytopathic rounding effects, and expressed late viral antigens. We conclude that de novo KSHV infection induces a spindle cell conversion phenotype in primary DMVEC cultures that is directly associated with latent state expression of the LANA1 protein. However, these cultures also spontaneously reactivate to produce an unusual combination of both latent and productive but slow lytic cycle infection. The formation of spindle cell colonies and plaques in DMVEC cultures provides for the first time a quantitative assay for directly measuring the infectivity of KSHV virion preparations.  相似文献   

15.
Kaposi's sarcoma occurs as a multicentric proliferation of endothelial cells. A lesion may progress through several histologic stages, culminating in a lesion consisting of spindle cells with marked nuclear atypia that may be indistinguishable from angiosarcoma. To assess the relationship between the nuclear DNA content and the stage, 29 paraffin-embedded biopsy specimens from 25 cases of Kaposi's sarcoma were classified according to their histologic stage and flow cytometric DNA ploidy status. The findings were compared with those in 14 angiosarcomas (5 postmastectomy angiosarcomas, 6 other cutaneous angiosarcomas and 3 angiosarcomas of deep tissues). The Kaposi's sarcoma specimens studied included samples with irregular lymphatic-like channels (stage 1), transition to spindle cells (stage 1t2), nodular spindle-cell aggregates (stage 2), scattered atypical spindle cells (stage 2t3) and histologic features indistinguishable from those of angiosarcoma (stage 3). Of the 25 Kaposi's sarcoma specimens of stage 2 or less, 17 had a diploid DNA distribution while an additional 8 had broad diploid G0G1 peaks (peridiploid, with a coefficient of variation greater than 7.5%, present in similar proportions in stages 1, 1t2 and 2). One of three stage 2t3 lesions showed tetraploidy while the single stage 3 specimen (from the leg) was aneuploid, with a DNA index (DI = 1.16) similar to that of four of the five postmastectomy angiosarcomas (DI = 1.14 to 1.20). An additional three angiosarcomas also showed nondiploid distributions (DI = 1.16, 1.98 and 2.13, respectively); the remainder were diploid or peridiploid. These results support previous cytogenetic data suggesting a normal karyotype in Kaposi's sarcoma up to stage 2, with atypia beginning as cells acquire numerical and structural chromosomal aberrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Human herpesvirus 8 (HHV-8; also designated Kaposi's sarcoma-associated herpesvirus) is the likely etiological agent of Kaposi's sarcoma (KS). HHV-8 encodes a latent nuclear antigen (LNA) which is the product of the viral gene orf 73. LNA is recognized by most infected patient sera and is the basis of current immunofluorescence assays used in epidemiological studies of HHV-8 infection. Here we describe the characterization of four monoclonal antibodies raised to the C-terminal third of LNA-glutathione S-transferase fusion proteins. These monoclonal antibodies recognized discrete linear epitopes within the C terminus and repetitive region of LNA, detected antigen in primary effusion lymphoma (PEL) cells, and precipitated a 220- to 230-kDa protein doublet corresponding to LNA from HHV-8-infected PEL cell lines. In situ immunocytochemistry of KS lesions with these antibodies show that LNA is extensively expressed in KS spindle cells.  相似文献   

17.
The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is expressed in all KSHV-associated tumors, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). We found that beta-catenin is overexpressed in both PEL cells and KS tissue. Introduction of anti-LANA small interfering RNA (siRNA) into PEL cells eliminated beta-catenin accumulation; LANA itself upregulated expression of beta-catenin in transfected cells. LANA stabilizes beta-catenin by binding to the negative regulator GSK-3beta, causing a cell cycle-dependent nuclear accumulation of GSK-3beta. The LANA C terminus contains sequences similar to the GSK-3beta-binding domain of Axin. Disruption of this region resulted in a mutant LANA that failed to re-localize GSK-3beta or stabilize beta-catenin. The importance of this pathway to KSHV-driven cell proliferation was highlighted by the observation that LANA, but not mutant LANA, stimulates entry into S phase. Redistribution of GSK-3beta can therefore be a source of beta-catenin dysregulation in human cancers.  相似文献   

18.
19.
20.
Kaposi's sarcoma-associated herpesvirus (KSHV) infection is associated with the development of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. We report the establishment of a monocytic cell line latently infected with KSHV (KSHV-THP-1). We profiled viral and cytokine gene expression in the KSHV-THP-1 cells compared to that in uninfected THP-1 cells and found that several genes involved in the host immune response were downregulated during latent infection, including genes for CD80, CD86, and the cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). Thus, KSHV minimizes its immunological signature by suppressing key immune response factors, enabling persistent infection and evasion from host detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号